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Slow time evolution of two-time-scale reaction-diffusion systems:
The physical origin of nondiffusive transport
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We study, from a mesoscopic point of view, the slow time-scale dynamics of a mixture of chemicals in
which there is a chemical reaction that occurs much faster than all other processes, including diffusion. For a
simple paradigmatic model reaction, it is possible to find a reduced set of dynamical equations analytically.
This procedure, which yields the same mean field equations as the macroscopic approach described by Strier
and Dawson@J. Chem. Phys,112, 825~2000!#, clarifies the physical origin of some of the terms that appear in
the reduced reaction-diffusion equations, such as ‘‘negative density dependent cross diffusion terms,’’ whose
actual meaning is hard to assess within the macroscopic framework. We also present a two-time-scale reactive
lattice gas automaton with which it is possible to check the validity of the analytical results and the conditions
under which the reduced description holds. Using this lattice gas we also show how the differential interaction
with immobile species can give rise to the formation of stable Turing patterns in a system where all the other
chemicals diffuse approximately at the same rate.
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I. INTRODUCTION

During the last decades, self-organization in nonequi
rium systems has attracted the attention of an increasing
tion of the scientific community. Theoretical, experiment
and computational approaches to the study of pattern for
tion have provided a deeper understanding of the mec
nisms of self-organization@1,2#. Among nonequilibrium sys-
tems, chemical reactions are paradigmatic. There i
growing interest to unravel the physics underlying its ric
ness of behaviors, which includes: excitability, bistabili
oscillations, different types of chemical waves, and the f
mation of stationary inhomogeneous structures. Fundame
questions concerning reaction-diffusion systems also aris
the biochemical and biological realm@3,4#. The theoretical
starting point is usually a set of deterministic equations
motion in the form of partial differential equations for th
concentrations of the chemicals. These are the so-ca
reaction-diffusion equations

]Sj

]t
5 f j~S1 , . . . ,Sn!1D j¹

2Sj , 1< j <n, ~1!

whereSj (rW,t) is the concentration of thej th speciesSj at
time t and positionrW, andD j is its diffusion coefficient (D j
>0). These equations describe the averaged behavior d
the microscopic processes of reactive and nonreactive c
sions. Namely, the~usually nonlinear! terms f j , in Eq. ~1!
represent the change in the concentrations due to the ch
cal reactions~using the law of mass action@5#! and to the
feeding and removal of the reactants, while the transport~dif-
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fusion! term D j¹
2Sj is a consequence of the random wa

that the particles of each species perform due to the no
active collisions with the solvent, which is supposed to
much more abundant than the solute speciesSj . Similar
equations also arise in other physical contexts in which
various variables and terms have other meanings. One o
aims of the theoretical approach to these problems is to
dict what sort of solutions are likely to be reached at lo
times, starting from a given initial condition. Usually, an
lytic solutions are out of reach and other approaches are
lowed to study and classify behaviors@6,7#. It is thus impor-
tant to develop approximate analytical methods to simp
the systems, and to gain insight into the behavior of
equations.

Part of the interest in reaction-diffusion systems grew
of the seminal work by Turing@3#, who pointed out that the
interplay between nonlinear reaction kinetics and diffus
processes could produce stable inhomogeneous pattern
this way he introduced a simple mechanism that could
plain the occurrence of spatial patterns in biology~see, e.g.,
@4#!. Although there is no definite proof that this type
mechanism is at work in any real biological system, there
some interesting results in this sense@8,9#. For many years,
Turing patterns could not be observed in laboratory exp
ments, partly because they need the chemicals to diffus
different rates, and this was hard to achieve in the dil
aqueous systems that the community was focusing on. W
Turing patterns were finally observed@10,11#, a heuristic ex-
planation was provided of why the various chemicals co
diffuse at different rates: it was the interaction with immob
species~namely, the gel where the reaction proceeds and
starch molecules that are used for visualization! that effec-
tively rescaled the diffusion coefficient of one of the spec
involved in the reaction~iodide in this case! @12#. The idea
that diffusion is rescaled by the interaction with other spec
~buffers! is also widespread in biology. For example, the
teraction of calcium ions with buffers@13# can explain, under
©2002 The American Physical Society33-1
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certain assumptions, the dependence of calcium diffusion
calcium concentration in the cytoplasm@14#. The effect of
different sorts of buffers~both mobile and immobile! on cal-
cium diffusion and transport in general is a subject of gr
current interest, since it is believed that buffers tailor t
repertoire of spatiotemporal behaviors that the calcium c
centration can display@15–17#. Calcium is a universal sec
ond messenger that is used by most cells for signaling
poses@18#. Thus, by the differential interaction with buffers
the calcium concentration can behave in various ways
eventually result in different end responses@18#.

The underlying common feature in these two types
problems~Turing patterns in laboratory experiments and c
cium dynamics in the presence of buffers! is, on one hand,
the existence of at least two very different time scales in
reaction-diffusion system. In fact, the rescaling of the dif
sion coefficient of a given species is obtained if the react
with the immobile buffers occurs much faster than diffusio
The other common feature is the fact that it is the slow ti
variations that are of interest, while the dynamics of the bu
ers or of the immobile species in the case of the experime
Turing patterns is not. With these two basic ideas in mi
the aim is then to obtain a reduced description of the s
time dynamics in which at least some of the species h
disappeared as dynamical variables~usually buffers or en-
zymes!. We derived this reduction systematically in@19# us-
ing a two-time-scale analysis@20#. In order to do this we
applied perturbation methods,~developed basically for ordi
nary differential equations! to a case in which the dynamic
is described by partial differential equations. We did this
detail for the case of one reversible fast reaction. None of
previous attempts to handle this type of problem involve
systematic multiple-time-scale reduction. Furthermore, t
dealt with the paradigmatic buffering equation@21#

A1B

k2

k1

C ~2!

in which A is one of the species of interest~e.g., calcium!, B
is the free buffer, andC is the complex that is formed whe
A binds toB. On the other hand, the~mostly! heuristic ex-
planations that appear in@22# or @23# hold if the buffer is
immobile and in excess~the concentration ofB, B, is much
larger than the concentration ofA, A). The case of calcium
reacting according to Eq.~2! in the presence of any amoun
of either mobile or immobile buffers was addressed in@13#,
giving rise to what is now called thefast buffering approxi-
mation. The analysis of@13# mostly focused on the case i
which the only relevant processes were the fast reaction~2!
and diffusion.

The main motivation for the work that we describe in th
paper arises from the following feature of the reduced e
lution equations obtained in@19#: even if we start from a se
of reaction-diffusion equations of the form of Eq.~1!, the
final equations are not always of reaction-diffusion type. F
thermore, they contain terms that involve various combi
tions of concentration gradients and concentrations~which
should be associated with nondiffusive transport term!.
Only if the fast reaction involves an immobile species tha
04623
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in excess, the final equations are of reaction-diffusion ty
in which case a clear physical picture can be established~see
following section!. In all other cases, the physical meanin
of the nondiffusive transport terms is hard to assess. In o
to obtain a physical picture, in this paper we analyze
reduced description from a more microscopic point of vie
and determine what sort of thermodynamic force the non
fusive transport terms represent. To this end, we introduc
two-time-scale reactive lattice gas automaton with which
rederive the reduced~mean-field! equations analytically,
starting from a mesoscopic picture, and which we implem
numerically for different situations of interest. The result
that the extra terms that appear in the reduced equations
not truly ‘‘transport terms,’’ but some kind of ‘‘remnants’’ o
the fast reaction. The fast reaction correlates the local de
ties of the chemicals and those terms represent the reac
modation of these densities to satisfy the correlation con
tion after it is perturbed due to the diffusive transport of t
chemicals. The physical picture also provides a better un
standing of the accuracy of the reduced description, wh
we probe with the numerical simulations. All the analyt
calculations are done for the case in which Eq.~2! is the only
chemical reaction that occurs in the system. However,
conclusions that we draw can be extended straightforwa
to the more general case of the arbitrary reversible fast re
tion that we treated in@19# or to systems in which othe
~slow! reactions coexist with the fast reaction~2!. In order to
illustrate the last assertion, we show some numerical sim
lations of the Schnackenberg model@24# in the presence of
an immobile substance that interacts with one of the che
cals according to Eq.~2!. Such a system mimics the mai
features of the laboratory experiments in which Turing p
terns are observed~which is a consequence of the differenti
interaction with an immobile species!. In fact, we show that
the presence of the immobile species yields Turing structu
in a region of parameters where otherwise stable patte
would not be found.

The paper is organized as follows: in Sec. II we revie
the reduction of a reaction-diffusion system within the ma
roscopic framework applying it to Eq.~2! and discuss the
limiting case in which the final equations are of reactio
diffusion type. In Sec. III the fundamentals of the theory
lattice gases are briefly mentioned~for a complete review see
@25# and references therein!, and an analytical approximatio
of the lattice gas theory suitable for two-time-scale syste
is described. In Sec. IV we apply these ideas to the reac
~2!, and show how the results of Sec. II are reobtained wit
this framework. In Sec. V we describe various numeri
implementations of two-time-scale reactive lattice gas
tomata and show the results of different simulations. Som
the simulations are done to check the validity of the analy
results. Other simulations are done to study the effect of
fast reaction on the formation of patterns. In particular,
show that the Turing space of the Schnackenberg mode
enlarged by the fast interaction of the chemicals with
immobile species. Finally, we discuss the central points
the Conclusions.
3-2
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II. MACROSCOPIC APPROACH: REACTION-DIFFUSION
EQUATIONS

Let us consider a system described by Eqs.~1!. Let us
assume that there is some reaction that occurs much f
than the rest of the processes, so that we can define the s
parameter«!1 as the ratio between the fast and the sl
time scales. Then a perturbative analysis in terms of« may
be done and a reduced description of the slow time dynam
may be obtained. We discussed the general case in@19#, and
over here we will only quote the results in some particu
cases. Let us assume that there are three speciesS15A,
S25B, andS35C, whereA, B, andC react according to Eq
~2!, on the fast time scale, i.e.,k2 ,k1;O(1/«), while the
rest of the parameters are of order one or higher in«. Let us
assume that this is the only reaction in whichB and C are
involved, and that these species are not removed or fed f
outside the region where the reactions take place~the gel in
the case of the experiments in which Turing patterns
observed or the cytosol in the case of calcium dynami!.
Thus, the reaction-diffusion system~1! that we are dealing
with is of the form

]A

]t
52k1AB1k2C1g~A!1DA¹2A, ~3!

]B

]t
52k1AB1k2C1DB¹2B, ~4!

]C

]t
5k1AB2k2C1DC¹2C, ~5!

whereA, B, andC are the concentrations of the various sp
cies, DA , DB , and DC their diffusion coefficients, and the
term g(A) represents the slow chemical reactions in wh
the speciesA is involved and the feeding and removal of th
species. The boundary conditions will be either no flux
periodic. Although this is a relatively simple system, the c
culations we describe here can be easily extended to the
in which there are some additional species that are only
volved in slow reactions~such as in the Schnackenberg sy
tem that we simulate numerically in Sec. V!. On the other
hand, calcium dynamics in the presence of one buffe
modeled by this set of equations. Although the case of ac
experiments in which Turing patterns are observed is m
more complicated than the Schnackenberg model, we th
that our study captures the essential features regarding
rescaling of the diffusion coefficients. Following the calcu
tions described in@19# we obtain that, after a short transie
~of order«) the various concentrations approach values t
evolve on the slow time scale according to

]A

]t
5~12GBA!g1~12GBA!DA¹2A2GABDB¹2B

1~12GAB2GBA!
k1

k2
DC~B¹2A1A¹2B

12¹B•¹A!, ~6!
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]B

]t
52GBAg1~12GAB!DB¹2B2GBADA¹2A1~12GAB

2GBA!
k1

k2
DC~B¹2A1A¹2B12¹B•¹A!, ~7!

C5
k1

k2
AB, ~8!

where

GAB5
A

kd1A1B
, GBA5

B

kd1A1B
, kd[

k2

k1
, ~9!

andg is a function ofA.
Both in the case in whichB andC are immobile and in the

case of the dynamics of cytosolic calcium in the presence
buffers, the diffusion coefficients of the free bufferDB and of
the complexDC are similar. Therefore, we will further as
sume thatDC5DB . It then follows that, if att50 it is B
1C5BT , with BT homogeneously distributed in space, th
B1C5BT at all points in space during the whole evolutio
This follows clearly from adding Eqs.~4! and~5!. Using this

FIG. 1. Random walk of anA particle in the presence of solven
molecules, drawn as filled circles~a!, and in the presence of bot
solvent andB particles~b!. While in ~a! the collisions are nonreac
tive and theA particle is free all the time, in~b! it remains bound to
eachB particle with which it reacts, to form the complexC during
a time of the order of 1/k2 .
3-3
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STRIER, CHERNOMORETZ, AND DAWSON PHYSICAL REVIEW E65 046233
conservation law the system~6!–~8! may be further reduced
to one evolution equation forA plus the algebraic equation
B5kdBT /(kd1A) and Eq.~8! @26#. Clearly, this final evo-
lution equation is not, in general, of reaction-diffusion typ
Furthermore, even in the case in whichDC5DB50, for
which most of the terms vanish, the transport of theA par-
ticles is not exactly diffusive, since the effective diffusio
coefficient, (12GBA)DA , is concentration dependent. The
is a limiting case in which the dependence on the concen
tion can be neglected, namely, when the solution is so di
that A!kd and A!BT . In that case, the effective diffusio
coefficient is (12GBA)DA'kd /(kd1BT)DA . This has a
clear microscopic interpretation that we illustrate in Fig. 1

Figure 1~a! corresponds to the microscopic picture th
gives rise to the usual diffusion term. In this case, theA
particles perform a random walk due to the nonreactive c
lisions with the solvent molecules. Thus, the mean distancL
that the particle transverses during a total timeT scales as
L2;TDA , with DA the diffusion coefficient~which is pro-
portional to the mean free path of theA particles in the
presence of the solvent!. Figure 1~b! corresponds to the cas
in which theA particles also react with an immobile buffe
that is in excess,B. Thus, when eachA particle moves in the
medium, sometimes it encounters a solvent molecule w
which it collides changing its direction instantaneously, a
other times it encounters aB particle and, with a certain
probability, reacts and stays bound to it for a timeTs
'1/k2 . Then, if one looks at one particle during a total tim
T, only a fraction of this timeTf is used by the particle to
move around. Then, the mean distanceL, in this case, will
scale with the fractionTf asL2;TfDA8 , whereDA8 is propor-
tional to the mean free path in the presence of both solv
andB particles. However, if the solvent is much more abu
dant thanB, then we may assume thatDA8'DA . Notice that
this condition is completely hidden in the macroscopic d
scription. If the concentrationB is much bigger thanA, then
most of theB particles will be free at any given time so th
B'BT . This also implies that one can look at eachA par-
ticle independently, without having to consider what t
otherA particles are doing at any given time. Then we m
estimate the number of reactive collisions that oneA particle
suffers during the total timeT ask1BTTf , since it can only
react while it is free~i.e., during the fractionTf!. If the
particle stays bound during a timeTs'1/k2 after each reac-
tion, then the total time during which it is bound
k1BTTf /k2 , and the fraction during which it is free satisfie
Tf5T2k1BTTf /k2 from which we getTf5kdT/(kd1BT).
This implies thatL2;TDAkd /(kd1BT). Thus, the transpor
is diffusive with an effective diffusion coefficient that i
equal toDAkd /(kd1BT). Although this limiting case has a
clear microscopic interpretation, the physical meaning
what we could call cross-diffusion terms or of the nondiff
sive ones that appear in Eqs.~6! and~7! is not clear at all. In
the following sections we try to elucidate the physical me
ing of these terms by determining what their microsco
origin is.

III. MESOSCOPIC APPROACH: LATTICE GAS THEORY

Reaction and transport processes can be modeled
means of a reactive lattice gas automaton~RLGA! that cap-
04623
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tures the essentials of the microscopic reactive molecular
namic scheme@25,27#. Within this framework, each specie
is described by the number of particles of each given vel
ity residing at the sites of a regular lattice. The evoluti
occurs at discrete time steps, when each particle undergo
random walk between the lattice sites~diffusion!, and reac-
tive collisions occur~when a certain number of particle
meet at a lattice site a reaction occurs according to so
prescribed probability!. Lattice gas methods are clearly fast
than full molecular dynamics simulations, because they
volve some degree of coarse graining that allows the stud
the evolution for long time scales, treating the shorter ti
scales in a simplified fashion. Most RLGA assume an exc
sion principle that restricts the number of particles of ea
species at a node, with a given velocity. The exclusion p
ciple allows the dynamics to be simulated very efficient
and also prevents particle density from building up in cert
regions of space. On the other hand, it leads to restriction
both the species densities and the complexity of the reac
schemes to be analyzed. Furthermore, it causes the par
to obey a Fermi-Dirac statistics that is difficult to justify o
physical grounds@28#. In this paper we abandon the exclu
sion principle, and allow for an arbitrary number of particl
to reside at each node of the lattice@28–30#. This is not the
first time that the exclusion principle is dropped for reacti
lattice gas automata. In fact, our numerical implementati
of the lattice gas follow Ref.@29# in one case and Ref.@28# in
another one.

As mentioned before, lattice gases imply some degree
coarse graining. We assume that each node represen
neighborhood occupied by a large number of particles. Th
our description cannot describe inhomogeneities that occu
spatial scales that are smaller than the distance between
nodes. Given that we do not use the exclusion princip
keeping track of the particles’ velocities becomes unnec
sary. Namely, the diffusive transport term is modeled by
random walk in which each step is independent of the p
vious one~in the sense that the direction in which a partic
moves during one step is not correlated to the direction of
preceding step!, while the probability that a chemical reac
tion occurs is velocity independent. Therefore, we will d
scribe the dynamics in terms of the total number of partic
of each species at a node and given time, regardless of
velocity. In the Appendix there is a more detailed descript
of the dynamics in which we show that this point of view
in fact correct. Since we are interested in the derivation
the macroscopic description from the microscopic one, m
of the theoretical analysis that we present is done at the l
of a lattice Boltzmann scheme, i.e., in terms of averag
Lattice Boltzmann methods are somewhere in the mid
between reactive lattice gas automata and finite differe
methods@31#. They are suitable whenever one is interested
the evolution of averaged quantities.

A. A two-time-scale lattice gas

The key part of a RLGA is the construction of an evol
tion operator that gives the state of the lattice~the occupation
number at every node! after the reaction and transport~dif-
3-4
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fusion in our case! operators are applied to the previous sta
A useful way to write the evolution operatorEs for the spe-
ciess is @38#

Es5O 6 l s~R+T !, ~10!

where sPŜ, and Ŝ denotes the set of all the species. T
operatorO with a 1 l s superscript meansl s applications of
the transport operatorT for every reactive operationR, while
a 2 l s superscript indicates one application ofT every l s of
R. This form of writing the evolution is suitable for numer
cal purposes, because the desired relations between the
fusion coefficients of different species are easily incorp
rated in the simulations. As we will show, it is also useful f
systems with two different time scales, as the ones we
interested in. In particular, we want to describe the evolut
on the slow time scale of systems in which some of
reactions occur on time scales sensitively faster than ot
and diffusion. In order to simplify the discussion we prese
here a detailed analysis of the case in which there is only
reaction, which is fast, while diffusion is the only slow pr
cess. The results can be easily extended to the case in w
there are other slow processes, in particular, slow reacti
To this end we take a relatively large time stept, half of
which we divide in several shorter time steps of sizeT. The
ratio T/t represents the ratio between the reactive and di
sive time scales. The update of the distribution of partic
from time t to time t1t consists of one transport step th
evolves the distribution from timet to time t1t/2, followed
by l reaction steps (l[t/2T) that evolve the distribution
from t1t/2 to time t1t. This splitting is convenient from
the analytical point of view. It is reasonable for numeric
implementations provided thatt is small enough so that th
fraction of particles that move from one site to a neighbor
one during the timet is also small. In fact, we checked th
validity of this approximation as we describe in Sec. V. A
cording to this splitting, the reaction operatorR is decom-
posed as

R t5R T+R T+•••+R T, ~11!

whereR T appearsl times and the action of the evolutio
operatorE t5R t+T t can be formally written as

Ns~rW,t1t!5E t@Ns~rW,t !#, ~12!

where the stochastic variableNs(rW,t) is the number of par-
ticles of speciess that occupy the node of the lattice locate
at rW, at timet. Since we are interested in the slow time-sc
dynamics, we consider the evolution in time steps of sizet.
The lattice spacing will be denoted byl.

For the purpose of deriving the continuous limit from t
microscopic dynamics embodied in the explicit form of t
evolution operator, two assumptions are usually made. F
it is supposed that the number of molecules of a given s
cies varies smoothly over several lattice spacings. Secon
is assumed that the ensemble average of the product o
occupation number of different species can be broken
the product of the averages of each species separately~usu-
ally referred to as themolecular chaoshypothesis!. While
the former hypothesis can be fulfilled in our case, the ine
04623
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ciency of diffusion for mixing the particles throughout th
vessel, and the repeated action ofR T, that rapidly correlates
the concentrations of different species at any given node
the lattice, prevents us from applying the latter assumpt
In order to obtain a continuous limit, the existence of su
correlations poses a hard obstacle. However, ifl is large
enough another useful approximation can be performed
may be assumed that the mean concentrations of the va
chemicals approximately reach local equilibrium value1

These values may be different at different lattice sites, a
will depend only on the initial conditions, i.e., the local equ
librium values at each site before the application of the
action operator. In order to explain why the assumption
local equilibrium may be valid, it is useful to think of th
system as composed of a large number of small cells w
sides of sizel, centered at each node of the lattice. For t
transport of particles between cells to be diffusive over
time scalet ~and effectively modeled by a random walk, a
explained later!, each particle needs to collide several tim
with solvent molecules during the timet. This implies that
the mean free pathlF and the mean frequencynC of nonre-
active collisions satisfylF!l, nCt@1. However,l and
t21 cannot be chosen as small as we wish because the
another constraint: the number of particles inside a cell c
not change too much during the timet if we want to ap-
proximate its time derivative by the ratio between its chan
andt. Thus, very few particles must leave the cell during t
time t. This is satisfied ifDt/l2!1. This second condition
also implies that individual cells can be well approximated
closed systems on the fast time scale~which is much shorter
thant). Therefore, the application of the ‘‘full’’ reaction op
eratorR t, inside each cell, yields mean values for the va
ous concentrations or, equivalently, mean number of parti
Ns[^Ns& that satisfy the equilibrium relationship ift
@Teq , with Teq the time it takes for the reaction to equil
brate. The conditionsDt/l2!1 and t@Teq imply that l
@ADTeq. Therefore, the equilibrium condition will be valid
provided that the macroscopic quantities do not vary o
length scales that are too small. The following diagra
shows the evolution from a set of initial conditionsNs(rW,0)
yielding mean valuesNs(rW,t)[^Ns(rW,t)&:

Ns~rW,0!→
T t

Ns~rW,t/2!→
R t

Ns
eq~rW,t!→

T t

Ns~rW,3t/2!

→
R t

Ns
eq~rW,2t!→

T t

. . . , ~13!

whereNs(rW,nt)5Ns
eq(rW,nt) (nPN,nÞ0) are supposed to

be equilibrium values,2 and where we have supposed th
bothT t andR t advance time by the same amountt/2. The

1Here, the mean concentration corresponds to an ensemble
age ofNs(x,t) over several independent realizations. In Sec. V, t
assertion is numerically proved.

2We will suppress in the following the superscript denoting eq
librium at timest5nt with nPN1 .
3-5
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STRIER, CHERNOMORETZ, AND DAWSON PHYSICAL REVIEW E65 046233
scheme depicted in Eq.~13! emphasizes the fact that, be
cause of the large difference between the times scales
which reactions and diffusion occur, diffusion essentia
acts over local equilibrium values that are determined by
relative abundance of the different species before the ap
cation of the reaction operator.

As we have already mentioned, we assume that trans
is only due to the elastic scattering of particles of the vario
species,sPŜ, with solvent molecules~i.e., we consider a
dilute solution!. The following fact is hidden in this kind o
description: reactive lattice gas automata treat nonreac
collisions only in a coarse-grained approximation. On
time scales that these lattice gases can resolve, the velo
are not correlated, and each particle can be viewed as
forming a random walk. If the medium is supposed to
isotropic, the action of the transport operatorT t is to let each
particle move to any of itsj neighboring sites with an equa
probability ps , or to remain stationary with probability 1
2jps ~no advection is present!, wherej is the number of
nearest neighbors (j52 in one space dimension andj54
for a square lattice in two space dimensions!. For simplicity
we will consider, in this discussion, a one-dimensional latt
where the coordinate is denoted byx. Higher dimensions can
be handled equivalently. We can write the transport oper
formally as@29#

Ns~x,t1t/2!5T tNs~x,t !5 (
i 521

i 51

(
m51

`

hx1l i ,m
( i )

3H„Ns~x1l i ,t !2m…, ~14!

where the first sum runs over the components of a rand
triplet hW x,i taking one of the values (1,0,0), (0,1,0)
(0,0,1) with probabilitiesps , 122ps or ps , respectively,
and H is the Heaviside function defined byH(y)51 if y
>0, andH(y)50 otherwise.

The macroscopic description is obtained by taking an
semble average ofNs(x,t) over several independent realiz
tions of the system. In practice, however, this average
assumed to be equivalent to some coarse graining or
average@28#. The action of the transport operator~14! on the
mean occupation number reduces to moving a constant
tion of particlesps ~generally different for each species! to
each neighboring cell. Using Eq.~14!, the evolution for the
mean numbers can be written as

Ns~x,t1t/2!5Ns~x,t !1ps@Ns~x1l,t !1Ns~x2l,t !

22Ns~x,t !#. ~15!

Using the conservation laws and the relations among
~mean! densities at equilibrium, it is possible to write dow
the values ofNs(x,nt) at each node of the lattice as a fun
tion of its initial valuesNs(x,nt2t/2) ~before the applica-
tion of T t). Then, a closed system is finally obtained in t
form of a coupled set of master equations. Note that
procedure makes it evident that the explicit form of the
action operatorR T is not important. In fact, any sensibl
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reaction rule must project the local concentration to equi
rium values on the slow time scale.

IV. APPLICATION TO THE CASE A¿BsC
In this section we apply the ideas described in the prec

ing section to study the reaction~2!. To this end, we first note
that as there is no feeding or removal of chemicals, the wh
system is closed. Thus some quantities are conserved du
the reactions@32#. The sum ofA ~or B) and C molecules
over all the nodes of the lattice is clearly conserved, beca
the creation of one type implies the annihilation of the oth
Another conservation law arises because each reaction le
the difference between the total number ofA and B mol-
ecules unchanged. But these conservation laws are glo
and do not apply to each cell separately, because diffus
can add or subtract particles at each node independent
reactions. Instead, the following local relations should ho

NA~x,t1t/2!2NB~x,t1t/2!5NA~x,t1t!2NB~x,t1t!,

~16!

NA~x,t1t/2!1NC~x,t1t/2!5NA~x,t1t!1NC~x,t1t!,

~17!

NB~x,t1t/2!1NC~x,t1t/2!5NB~x,t1t!1NC~x,t1t!,

~18!

where t5nt. Note that Eqs.~16!–~18! are not all indepen-
dent. These equations reflect that, during the successive
plication of the reaction operator on the fast time scale, e
cell behaves as a closed system. The equilibri
concentrations—those reached after every application of
projectorR t—satisfy the algebraic relation

A~x,t1t!B~x,t1t!5kdC~x,t1t!, ~19!

where

A~x,t !5NA~x,t !/l, B~x,t !5NB~x,t !/l,

C~x,t !5NC~x,t !/l. ~20!

These equations can be used to obtain the equilibrium va
of the local numbers of molecules, as a function of the init
values. Solving Eqs.~16!, ~17!, and ~19!, the non-negative
roots are

NA~x,t1t!5
1

2
@NA~x,t1t/2!2NB~x,t1t/2!

2 k̄d1h~x,t1t/2!#, ~21!

NB~x,t1t!5
1

2
@NB~x,t1t/2!2NA~x,t1t/2!

2 k̄d1h~x,t1t/2!#, ~22!
3-6
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SLOW TIME EVOLUTION OF TWO-TIME-SCALE . . . PHYSICAL REVIEW E 65 046233
NC~x,t1t!5
1

2
@NA~x,t1t/2!1NB~x,t1t/2!

12 NC~x,t1t/2!1 k̄d2h~x,t1t/2!#,

~23!

where

h~x,t !5@~ k̄d2NA1NB!214k̄d~NA1NC!#1/2, ~24!

and k̄d5kdl.
From Eqs.~15! and~16!, it is straightforward to show tha

DNA2DNB5pADA2pBDB , ~25!

where we have introduced the notation

DNs[Ns~x,t1t!2Ns~x,t !, ~26!

Ds[Ns~x1l,t !1Ns~x2l,t !22Ns~x,t !.

Equation~25! emphasizes that the only source of differen
in the relative number ofA andB particles in any lattice site
during the time stept, is due to the action of the transpo
operator over each species.

For simplicity we first setpC50 ~i.e.,C does not diffuse!.
Then using Eq.~15! and Eq.~17! we find

DNA1DNC5pADA . ~27!

Because the differencesDNs are evaluated at equilibrium b
construction, we can make use of Eq.~19!. Then

k̄dDNC5NADNB1NBDNA1DNADNB .NADNB

1NBDNA . ~28!

Now, we can solve for the variation ofNA as

DNAF11
1

k̄d

~NA1NB!G5pADA2
NA

k̄d

~pBDB2pADA!.

~29!

Proceeding in the same way we find

DNBF11
1

k̄d

~NA1NB!G5pBDB2
NB

k̄d

~pADA2pBDB!.

~30!

Equation~29! @which is completely analogous to Eq.~30!#
isolates two components responsible for the time variation
NA at a given pointx. One of them simply accounts for th
transport of particles towards and fromx. The other one is
the most interesting. It indicates thatNA and NB can also
change due to the chemical reaction: when the chem
equilibrium is disrupted by the arrival or departure ofA or B
particles during the diffusive step, the~fast! chemical reac-
tion establishes a new equilibrium and this is reflected
these other terms. Also, if the arrival ofA andB particles is
perfectly balanced, the chances for reacting do not cha
04623
f

al

n

ge

and then this term would not induce a time variation ofNA .
Furthermore, if the number ofA particles is large and/or the
probability of having a reactive collision increases, this
fect becomes stronger. The derivation also makes clear
key role played by the correlations introduced among
concentrations on the fast time scale@Eq. ~19!#. This equa-
tion underlies both, the above reasoning and the prefa
that multiplies the time variations ofNA ~andNB).

The final step is to find the continuum limit of these equ
tions. The usual way to do this is to lett→0 andl→0, with
the ratio l2/t finite. Writing the concentrations as in Eq
~20!, multiplying Eqs. ~29! and ~30! by 1/t, defining DA
5pAl2/t andDB5pBl2/t, and taking the above-mentione
limit, we obtain Eqs.~6! and ~7! with DC50. Now we see
that behind the diffusionlike appearance of some of the te
in these equations,~e.g., the self-diffusion and the cross
diffusive terms!, there is a common chemical origin. The fa
that they can be expressed in the form of a Laplacian
because the differences in the concentrations of neighbo
sites regulate the rate of the reactions.

In the case whereDCÞ0 ~i.e., pCÞ0), the same reason
ing leads us to the equations

DNA2DNB5pADA2pBDB , ~31!

DNA1DNC5pADA2pCDC ,

DNB1DNC5pBDB2pCDC ,

from which we get Eqs.~6!–~8! in the continuous limit.

V. NUMERICAL IMPLEMENTATION OF THE
TWO-TIME-SCALE LATTICE GASES

In this section we describe the numerical implementat
of two ~closely related! types of reactive lattice gas automat
that follow the ideas described in the previous sections. In
cases the evolution operatorE ~i.e., the combination of the
reaction and transport operators! acts on a regular lattice o
sizeL ~linear or square! with periodic boundary conditions
As mentioned before, we do not impose the exclusion p
ciple in any of these versions.

We also present some numerical simulations that we p
formed with these lattice gases. First, a situation in wh
there are three species,A, B, andC in a closed vessel tha
react on the fast time scale according to Eq.~2! and diffuse
on the slow time scale. Initially,B andC are homogeneously
distributed and there is a local accumulation ofA particles
that starts to spread within the system. In this case the n
linear rescaling of the diffusion coefficients is only a tra
sient effect because the system is unable to support inho
geneous structures, so the density-dependent diffu
coefficients approach constant values. In spite of this,
simulations are good to check the validity of~i! the slow-
time-scale reduction of the evolution equations, testing
limits of applicability, ~ii ! the physical interpretation that w
provided of the microscopic origin of the various transp
terms.

The second situation that we have simulated is one
may support stationary inhomogeneous structures. Nam
3-7
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STRIER, CHERNOMORETZ, AND DAWSON PHYSICAL REVIEW E65 046233
we have simulated an open system with six species,A, S2 ,
X, Y, B, andC, that react according to the scheme

A

k21

k11

X, Y→
k2

S2 , 2A1S2→
k3

3A,

A1B

k24

k14

C. ~32!

The set of the first three reactions in Eq.~32! constitute the
so-called Schnackenberg model@24#. By keeping the concen
tration of X and Y at certain nonequilibrium values, it i
possible for this system to display homogeneous perio
oscillations in the concentrations ofA andS2. Furthermore,
if the ratio between the diffusion coefficientsd5DS /DA is
greater than a certain threshold, stationary inhomogene
structures can also be formed@4#. An important motivation
for studying this system is that it is believed that a simi
mechanism controls some features of the unicellular algaAc-
etabularia. The experimental evidence suggests that the
evant species involved in the appearance of a Turing st
ture in this organism are calcium ions (A5Ca21) and
cyclic-AMP (S25cAMP) @4,33#. Nevertheless, there is
problem in proposing this simple model as an explanation
the observations: the ratio between the~free! diffusion coef-
ficients of Ca21 and cAMP is below the threshold value o
the Turing instability. However, Ca21 is strongly bufferedin
vivo. Then, it is possible that its diffusion coefficient is e
fectively rescaled by its interaction with buffers in such
way that the ratio of effective diffusivities and the rescal
reaction kinetics allow for the formation of stable pattern
With this in mind, we added the fourth equation to accou
for the interaction of Ca21 with an immobile bufferB. As in
Eq. ~2!, we assume that the binding and unbinding ofA with
B, occurs on a shorter time scale than any other proces
the system.3

The aim of this second set of simulations is twofold. Fir
we want to show that the conclusions obtained in Sec. III
also be applied to other~more complex! situations. Second
we want to show a simulation that mimics the main featu
of the laboratory experiments in which Turing patterns
observed. Namely, that the differential interaction with
immobile species can enlarge the region of parameter s
for which stable Turing patterns exist.

A. The algorithms

We include here a brief description of the algorithms.
the first case@the only reaction is Eq.~2! and occur on a fas
time scale compared to the slow diffusion process# the up-
dating process is split up in two. Namely, during half of t
time step, the ‘‘one-step’’ reaction operator associated w
the fast reaction,RF

T , is appliedl times (l;t/T), each time
to a new set of particles that are randomly chosen inside e

3This assumption seems to be reasonable for various endoge
calcium-immobile buffers, such as troponin-C@34#.
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cell. Whether the reaction actually occurs after each appl
tion of RF

T or not is also decided randomly, with a certa
probability. During the other half, the transport operatorT t is
applied to one set of randomly chosen particles. We imp
mented two versions of how to do this splitting, which diff
by how the ratio between the number of times that ea
operator is applied,l, is chosen: while in one versionl is
fixed, in the other one it is chosen randomly among a se
values with fixed mean valuel. We compared both ap
proaches finding a very good agreement between them. M
of the simulations that we show correspond to the vers
with fixed l. The transport operator (T ) moves each particle
of speciess to any of its adjacent lattice points with prob
ability ps or leaves it fixed with probability 124ps . In all
the simulations, we assumed that the probabilityps was
greater forA than for B and C. This means that the free
diffusion coefficient ofA is larger than those ofB and C.
Regarding the reactions, we basically followed Ref.@29#.
The scheme works like this: if there areNA andNB particles
at a site, the reaction operator removes oneA particle and
oneB particle and adds oneC particle at that site, with prob-
ability PABNANB . Conversely, if there areNC particles, one
of them is replaced by anA and aB particle with probability
PCNC . The short time stepT is chosen so as to keep bo
PABNANB andPCNC below unity for all times at any of the
lattice points. The proper link between the rate constants
the probabilities for a given reaction to occur, follows th
one described in@29#. That is,k1 is associated with the ratio
PAB /T and k2 to PC /T. In all the simulations we usedkd
5k2 /k151 for the fast reaction.

For the scheme~32! some minor changes were intro
duced. The transport operator works similarly as the one
scribed for the previous scheme. Regarding the reactions
basically followed Ref.@28#. For example, in the reaction

ous

FIG. 2. Net mean-square displacement ofA particles as a func-
tion of time measured on the slow time scale in a square lattice w
L550. Circles correspond to (NA575 000, NB5NC55000),
squares to (NA5NB5NC575 000), and diamonds to (NA55000,
NB5NC575 000). For the three cases ad-like initial condition for
A was used, whileB andC were randomly distributed. The straigh
dash-dotted lines correspond to the case of pure diffusion withpA

50.7 ~steeper slope! and pA50.2. The long-dashed lines corre
spond to the mean-square displacement obtained with simula
of the reduced set of Eqs.~6!–~8! for equivalent parameter value
and initial conditions~see text!.
3-8
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SLOW TIME EVOLUTION OF TWO-TIME-SCALE . . . PHYSICAL REVIEW E 65 046233
A→X, a random number is picked for eachA particle to
decide, according to a certain probability~which we call
PA→X), if it transforms into anX particle or not. For the
trimolecular reaction, the situation is a little bit more com
plicated: all possible triplets of twoA particles and oneS2
particle are listed and a random number is picked sequ
tially to decide, with a certain probability (PS→A), if each
triplet transforms into threeA particles or not. If it does, then
all the triplets that contained the twoX particles that reacted
are removed from the list. The sequence stops when a
dom number has already been picked for all the triplets. I
a simple mathematical exercise to show that this proced
yields the law of mass action when the limit of a large nu
ber of particles is taken.

B. Numerical simulations

We discuss first the results for the case of three spe
that react fast according to Eq.~2! and diffuse slowly. Figure
2 shows the time evolution on the slow time scale of the
mean-square displacement of the particles of speciesA, i.e.,

^@rW(t)2rW(0)#2& where the average runs over allA particles
~its initial number being equal toNA). The speciesB andC
were initially randomly distributed over all lattice site
while the A molecules were concentrated on a 333 spot
located at the center of a rectangular lattice of sizeL550. In
all the simulations, the free diffusion coefficient ofA was
3.5 times greater than that corresponding toB and C (pA
50.7/4, pB5pC50.2/4). The curves correspond to simul
tions with different values of the relative initial number
particles (NA , NB , andNC!. The value ofl was fixed at 104

for all the simulations. We included as references two da
dotted lines that correspond to the case of pure diffusion w
pA50.7 ~the one with the steeper slope! and pA50.2. We
found that, when the total amount ofA particles released is
in large excess with respect toB, the behavior is practically
diffusive ~linear!, with diffusion constant very close to th
free diffusion coefficient~the curve with the empty circles in
Fig. 2!. This is intuitively clear, because the overwhelmi
majority of A particles are not bound formingC. Thus, they
diffuse at their normal rate, since the reaction effectiv
operates over a small fraction of particles. The rest of
particles move at their normal rate. When the amount oB
particles is increased, the plot of the net mean square
placement ceases to be a straight line, indicating that
transport is not purely diffusional~the empty square curve!.
In this situation, it becomes apparent from the figure that
effect of the reaction cannot be understood as a simple
caling of the free diffusion coefficient by a constant fact
Instead, a time dependence of the diffusion coefficient ari
that follows from both, the nonlinear density dependence
the ‘‘diffusion coefficients,’’ and the particulard-like initial
condition chosen forA. At short times, however, even whe
the density ofA in the whole lattice might be comparable
that ofB, in the small region where theA particles are con-
centrated, a situation similar to the first case occurs. So
major departures from the linear behavior are expected~the
initial slope is approximately 0.7). However, as time evolv
the particles that penetrate inside the region where the
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sity of A is small, have a high probability of reacting, an
consequently its effective mobility slows down. As the inh
mogeneity disappears~which is the ultimate fate for this par
ticular system!, the diffusion coefficients approach stationa
values that depend only on the initial densities, and the
sociation rate. The curve with diamonds shows the c
whenB is in excess with respect toA. The behavior is again
almost diffusive, and the measured diffusion coefficient c
responds to the slow diffusion of theC particles, i.e.,pA
50.2 ~at early times the slope is higher for the same rea
as explained before!.

In order to contrast these results against the ‘‘effect
diffusion coefficient’’ that the macroscopic reduced descr
tion yields, we also show in Fig. 2 curves of^r 2&(t)
[*0

Rr 2@A(r ,t)2A* (r ,0)#rdr /*0
R@A(r ,t)2A* (r ,0)#rdr vs

t, with A(r ,t) a solution of the reduced set of macroscop
equations@Eq. ~6! with DB5DC plus the algebraic relation
B5kdBT /(kd1A) andC5ABT /(kd1A), in this case# with
initial condition A(r ,0)5A* (r ,0)1NAd(r ) in a circular do-
main of radiusR525, with boundary condition]A/]r 50 at
r 5R. Notice that the initial conditions used for the lattic
gas simulations do not satisfy the local equilibrium con
tions that are implicit in the reduced macroscopic equatio
As mentioned in@19#, the initial condition for the reduced se
of equations, at each point in space, is equal to
asymptotic~equilibrium! solution that the actual initial con
centrations would approach if the fast reaction were the o
process~and there was no spatial coupling!. Given that the
initial condition of the lattice gas, away from the small
33 spot where allA particles are located, corresponds
uniform initial concentrations given by@A#050, @B#0

FIG. 3. Evolution on the fast time scale ofNA andNA
eq averaged

over a 333 neighborhood around the exploratory point, located
lattice sites apart from the center. The same initial distribution a
Fig. 2 was used withNA5250 000,NB5NC5100 000. The thicker
curves correspond to the local equilibrium values ofNA and the
thinner ones to the actual number ofA particles. We usedl 5103,
l 5104, l 553104, and l 533105 in ~a!, ~b!, ~c!, and ~d!, respec-
tively.
3-9
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STRIER, CHERNOMORETZ, AND DAWSON PHYSICAL REVIEW E65 046233
5NB /L2, and@C#05NC /L2, then the initial condition of the
reduced set of equations away from the small spot is
spatially homogeneous equilibrium valueA* (r ,0) that satis-
fies kA* (r ,0)B* (r ,0)5k8C* (r ,0), B* (r ,0)1C* (r ,0)
5@B#01@C#0, andA* (r ,0)1C* (r ,0)5@C#0. The value of
A* (r ,0) is not equal to zero for any of the simulations. Thu
the calculation of̂ r 2& obtained from the simulations of th
reduced set of equations as defined before corresponds
average of the mean-square displacement over thoseA par-
ticles that are injected in the small spot, not over allA par-
ticles, as it is the case for the lattice gas simulations. Thi
the explanation of why the values of mean-square displa
ment obtained from the reduced set of equations are la
than those obtained with the lattice gas. Namely, initially
injectedA particles diffuse, on average, at their free diff
sion rate, while those that come from a chemical decay of
C particles@those that are included inA* (r ,0)# diffuse at a
rescaled diffusion rate that is smaller. Thus, taking the av
age over all particles reduces the mean-square displace
when compared with the average over the injected partic
In any case, we observe that the slope of the curves eve

FIG. 4. Similar to Fig. 3, but for a lattice gas with a variab
number of diffusion to reaction time steps. The solid lines cor
spond to one realization, while the dashed line is the average
80 such realizations.

FIG. 5. Evolution ofNA( x̄,t) averaged around the explorato

point, x̄, as described in Fig. 3, after the chemical reaction ta
place forl 5102 ~filled circles! and l 533105 ~empty diamonds!.
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ally approach similar values for both sets of simulations.
then conclude that the effective diffusion coefficients of t
reduced set of equations provide an accurate estimate of
the particles spread, given that the separation of time sc
is sufficiently large.

Figure 3 shows the evolution ofNA andNA
eq as a function

of time, measured on the fast time scale, at a fixed~explor-
atory! point located ten lattice points away from the cent
where ad-like initial condition was again set forNA . The
other species were randomly distributed. The plots co
spond to different values ofl. For large l @Fig. 3~d!, l 53
3105 and Fig. 3~c!, l 553104#, the reaction rapidly drives
the system towards the equilibrium values, and thus, as
pected from Eq.~13!, diffusion essentially acts over the loca
equilibrium values determined by the relative abundance

-
er

s

FIG. 6. Relative error between the prediction of Eq.~6! and the
values obtained in the simulations as a function of the total num
of A particles present in the lattice.

FIG. 7. Turing pattern obtained from the modified version of t
Schnackenberg model at long times, with a diffusion ratiod54
below the standard critical value. They axis corresponds tohs

[Ns /l, averaged over 2.53105 successive states of the lattice ga
Solid circles~empty squares! correspond toC (A) particles. The
solid line is the steady-state solution numerically found by integ
tion of the set of reaction difusion equations, for the concentrat
of C molecules, while the dashed line stand for expected the c
centration ofA ~see the text for more details!.
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SLOW TIME EVOLUTION OF TWO-TIME-SCALE . . . PHYSICAL REVIEW E 65 046233
the different species. It is in this circumstance that the c
tinuum equations~6! and ~7! hold. Whenl is decreased, the
system is unable to reach the local equilibrium values. T
is shown in Fig. 3 where the divergence between the ac
and the equilibrium paths is manifest@Fig. 3~b!, l 5104 and
Fig. 3~a!, l 5103#. Because of the initial condition, the actu
number of particles that reach the exploratory point is ab
the equilibrium values. Again, given that the system even
ally approaches a homogeneous state, the departure o
two curves is only transient.

In Fig. 4 we plot the same evolution as that of Fig. 3~b!,
but in this case, the ratio between the number of times
the diffusion and the reaction operators are applied is pic
up randomly. This rule, which makes more sense physica
yields the desired ratio between time scales only on aver
The solid lines correspond to one realization, while t
dashed line is the average over 80 independent realizat
As expected, the artificially rippled form of each individu
realization gets smoother when the ensemble averag
taken. In this way, the local approach to equilibrium, whi
seems rather artificial in Fig. 3 or in the individual realizati
of Fig. 4, is somehow ‘‘hidden’’ in the averaged solution.
is this averaged solution that has to be contrasted agains
solution of the partial differential equation.

In Fig. 5 we plot the value ofNA , at the same explorator
point, as a function of time, before the application of t
diffusion operator forl 5102 andl 533105. The initial con-
dition is the same as before. As a result of the differ
effective diffusion coefficients, the times at which the fro
passes through the point are shifted. At any given time,
amount of unboundA particles is larger for lowerl values.
Thus, as we can see from the examples of Fig. 2, the ef
tive diffusivity is larger and the front arrives earlier for th
case depicted with filled circles (l 5102) than for the one
with empty diamonds (l 533105).

Figure 6 shows the relative error between the predic
value for the occupation number,NA(rW,t1t), that follows

FIG. 8. Concentration profile ofC ~solid line! and difference
between this concentration and the one obtained from Eq.~19! mul-
tiplied by 106 ~dashed line! at timest50.03 s~a! and t50.038 s
~b!.
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from Eq. ~6!, and the actual value that follows from th
simulation, averaged over the whole lattice. In this case,
particles were randomly distributed initially, andpC was set
to zero. As expected~see@32#! the error decays as the squa
root of the number of particles.

We now discuss the results obtained for the case of
chemical species reacting according to the scheme~32!. In
Fig. 7, we show the results of a simulation in one dimensi
Initially, all of the particles were randomly located at th
nodes of a lattice with periodic boundary conditions~similar
results were obtained using zero flux boundary condition!.
We divided the lattice of total lengthL510 mm into 350
cells, and the evolution took place with a time step of
31027s. The diffusion coefficients ofA and S2 were DA
540 mm2/s and DS2

5160 mm2/s. We initially set NA

5700, NS2
53100, NX5780, NY5630, NB512 000, and

NC52000. The microscopic reaction probabilities per u
time were PA→X50.0002, PX→A50.000 02, PY→S2

50.0002, PS2→A50.000 02, PB→C50.02, andPC→B50.2

measured in s21. As mentioned before, if the fast reactio
with the buffer were not included, this system would n
support stable Turing patterns for any set of reaction rates~or
here, reaction probabilities!, because the diffusion ratio
d[DS2

/DA54, is below the critical value,dc;6 ~see@4#!.
However, because of the interaction with the~immobile!
buffer B, a Turing pattern spontaneously emerges from
uniform initial condition, as we show in Fig. 7. This figur
corresponds to a time average of the occupation num
~divided byl) of A andC particles over a time interval o
length 0.05 s, taken after the first 0.5 s of the evoluti
have elapsed. While the successive microscopic st
change permanently, after a transient time, fluctuations
the occupation number occur around a well-defined aver
as the one displayed in this figure. Given that the correlati
between successive states rapidly dissapear, the time ave
is equivalent to an ensemble average over many indepen
realizations, and thus, the behavior observed in Fig. 7 is
pected to be found at the macroscopic level. We inde
checked this assertion by comparing the result of the lat
gas with the numerical integration of the macroscopic la
of motion, i.e., the set of four reaction diffusion equatio
governing Eq.~32! ~similar results were obtained integratin
the system after the rescaling procedure was performed
described in@19#!. The solid and dashed lines in Fig. 7 co
respond to the time-independent concentration profile oA
andC species, respectively. It can be seen that there is a
good agreement between the results of these two inde
dent approaches.

Finally we check if the concentrations satisfy the loc
equilibrium condition @Eq. ~19! with kd5k24 /k4# in this
case. As mentioned before, this is a consequence of the t
scale separation and it is the main assumption underlying
fast buffering approximation or the reduced description
@19#. It is important to note that when the stationary state h
been reached the equilibrium condition must be satisfi
However, local departures may occur during the evoluti
especially in those regions with large concentration gra
ents, where diffusion is not that slow compared to the f
3-11
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reaction. We show in Fig. 8 the concentration profile ofC
~solid line! at long times (t50.03 s), when the concentra
tion is close to the stationary pattern, and the difference
tween this concentration and the one obtained from Eq.~19!,
at two different times. The dashed line corresponds to t
t50.03 s and the dotted line tot50.038 s. There we ob
serve that the fast buffering approximation is a reliable
sumption in this case. We also observe that the error of
approximation gets smaller for larger times and never
ceeds 1024.

VI. CONCLUSIONS

In most experimental situations, the behavior of a che
cal or biochemical system can only be observed on t
scales that are large compared with the times required
many of the reactions to reach equilibrium. The evolution
then governed by a reduced set of equations that describ
collapsed spatiotemporal dynamics onto a lower-dimensio
manifold. Along with this spontaneous collapse, sometim
exogenous chemicals that are added to the systems for
ferent purposes, can further reduce the degrees of freed
The exogenous particles can alter dramatically the reac
kinetics and the rate of diffusion of the molecules involve
Perhaps the most striking evidence of this assertion is
role played by starch molecules loaded in gels of conti
ously fed reactors in the CIMA reaction, where Turing stru
tures were first observed@10,11#. Initially, starch was loaded
for visualization purposes, but the evidence suggests tha
selective interactions of the iodide molecules with the sta
provides the necessary difference between the diffusion
efficients of iodide and chlorite for Turing patterns to appe
@12,22#. Another example refers to the existence of Turi
structures from biochemical mechanisms at work in cells
is well known that the mechanism that controls the hair sp
ing in the whorl of the unicellular algaAcetabulariacan be
modeled using the Schnackenberg reaction diffusion eq
tions, identifying the morphogens with calcium ions a
cyclic-AMP @4,33#. While the experiments suggest that t
use of this simple model is well grounded, the relation b
tween the diffusivities needed for the emergence of a Tur
instability does not hold in reality. Taking into account th
Ca21 is strongly bufferedin vivo, it is still possible that the
rescaling introduced by a fast reaction with a buffer allo
for the appearance of patterns with a realistic ratio of dif
sivities. In this regard, the modified version of the Schna
enberg reaction diffusion system analyzed in this pap
shows the relevance of a selective interaction with buff
for the appearance of such structures in cells.4 Another re-
lated example—not included in this paper—refers to the
istence of Turing structures in the Selkov model of glycoly
@36#. While previous works@37# numerically supported the

4We have also found analytically the—enlarged—Turing space
the modified Schnackenberg reaction diffusion equations. If
buffer concentration is large enough it is in principle possible
observe Turing structures with nearly equal diffusion coefficien
See@35#.
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existence of a symmetry breaking instability of Turing typ
those results were with unrealistic relations between the
fusion coefficients of very similar chemical species. Ho
ever, the analysis of the reduced set of reaction diffus
equations shows that, without using a suitable tuned di
sion ratio, the possibility of finding Turing structures in ce
by the Selkov mechanism was, at least, overestimated@35#.
With all this in mind, it is clear that it becomes necessary
carefully assess the subtleties introduced by widespread
external agents or by endogenous buffers in the dynam
scenario.

In general, the behavior of a set of reaction-diffusi
equations depends on the relative rates of diffusion and
action. Quite often, we can think of a system as being in o
of two extreme situations where the mathematical analys
capable of being simplified. First, if diffusion is rapid com
pared with the reaction, the concentrations are effectiv
uniform throughout the medium, and the behavior is co
trolled solely by the reaction processes. This leads to a se
ordinary differential equations, which can be further reduc
in number if reactions occur on several time scales us
standard center manifold techniques. At the other limit, d
fusion is slow compared with some~or maybe all! of the
reactions. In this case, however, the simplification canno
performed to such great extent as in the former situation,
thus it becomes important to fully understand the origin
the terms that we are likely to find under general react
schemes@19#. The analysis presented in this paper sho
how the reduced equations will reflect that the concentra
of the different species reach local equilibrium values, a
how the effective rate of the reaction will be regulated by t
rate of supply of the reactants by the slow diffusive proce
In this way we were able to understand the common che
cal origin of both the rescaling of the self-diffusion term
and the cross-diffusive terms that appear in the macrosc
equations. As shown in@19#, more complex reaction scheme
share with the ones analyzed in this paper the same typ
terms in the phenomenological reduced equations, so
present analysis can also be extended to other cases, a
results obtained on the modified Schnackenberg model
port.
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APPENDIX

In this appendix, we give a brief description of the d
namics of the reactive lattice gas automaton~RLGA!, where
we show why it is not necessary to keep track of the p
ticles’ velocities if there is no exclusion principle. Consider
system ofŜ chemical speciesX1 , . . . ,XŜ that diffuse in so-
lution and that undergo a set of chemical reactions of
type

a1
(l )X11•••1a Ŝ

(l )XŜ→b1
(l )X11•••1b Ŝ

(l )XŜ , ~A1!

f
e

.
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where thel th reaction (l 51, . . . ,R) is characterized by
both, the set of stoichiometric indicesas

(l ) , bs
(l ) (s

51, . . . ,Ŝ) and the reaction rate constantkl . The aim is to
construct an approximate dynamics for both the elastic
reactive collision processes that occur in the real system
the RLGA model, the system evolves at discrete time st
of sizet on ad-dimensional regular lattice with lattice spa
ing l, which for simplicity is taken to be a square lattice
two space dimensions~or a cube in three dimensions!. Also
for simplicity, we will only discuss the case of period
boundary conditions~in which case all lattice sites ar
treated similarly, after an identification of the sites at t
borders!. In this Appendix we will take the particles’ veloci
ties into account, as it is done in RLGA that use the exc
sion principle. We will then show why it is not necessary
keep track of these velocities, if there is no exclusion pr
ciple, as in our case. We will assume that each particle
have j11 different velocities, wherej is the number of
nearest~different! nodes that each lattice site has (j52 in
one dimension andj54 in two!. During a time stept, each
particle can move to any of its nearest lattice sites, depen
on its velocity, or stay, if it has velocity zero. Thus, th
velocitiesvW i with 1< i<j are vectors of sizel/t that con-
nect neighboring lattice sites, andvW 050. A particular state of
the RLGA is then characterized byŜ sets of non-negative
integer variables,f s(rW,vW i ,t), s51, . . . ,Ŝ, 0< i<j, defined
at each lattice siterW and each timet. Each f s(rW,vW i ,t) repre-
sents the number of particles of speciesXs with velocity vW i ,
at site rW and timet. As mentioned before, the time step
divided in a diffusion~transport! time step~that changes al
the distributionsf s from t to t1t/2) and a reactive time ste
~that changes the distributions fromt1t/2 to t1t). There-
fore, the system evolves through the successive applica
of the transport and reaction operators. One may visua
the dynamics of the entire system as a stack ofŜ lattices~one
for each species! with identical labeling of the nodes and o
the particles’ velocities. The transport operator is designe
model the elastic collisions of the particles with solvent m
ecules. The way in which this process is modeled by RL
makes sense on a time scale of the order of the velo
relaxation time, and on a length scale that is larger than
mean free path of the particle@25#. Namely, it is assumed
that several collisions take place during a time step, so
the final and initial velocities are not correlated. Thus, dur
the ~diffusion! time step, each particle of speciesXs can
change its velocity to any velocityvW i , 1< i<j with prob-
ability ps and to velocityvW 050 with probability 12jps .
Given that our lattice gas does not use the exclusion p
ciple, the velocity can be any, no matter what velocities
other particles at the node have. After that, the particle
moved to the corresponding neighboring site, depending
the velocity it has ‘‘picked.’’ This is equivalent to make eac
particle perform a random walk, regardless of the last vel
ity it had. Namely, to choose its new location~among the
current location and the nearest neighboring ones!, regard-
less of the velocity it has. After the new location is chos
04623
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the velocity can be set equal to the one that correspond
the movement that the particle has performed. This can
written as

f s~rW,vW i ,t1t/2!5Ns~rW2vW it,t2t!

3(
j 51

`

z j
( i )H„Ns~rW2vW it,t2t!2m…,

~A2!

where Ns(rW,t)5( i f s(rW,vW i ,t1t/2) is the total number of
particles at pointrW and timet, thez j

( i )’s are random variables
that can be equal to 1, with probabilityps , and equal to 0,
with probability 12ps ~with ps satisfying 12jps.0), and
H is the Heaviside function defined byH(y)51 if y>0, and
H(y)50 otherwise. Each random variablez j

( i ) is the i th
component of a ~random! (j11)-uple in the set
$(0, . . . ,0),(1,0, . . . ,0),(0,1, . . . ,0), . . . (0, . . . ,1)%, where
the probability of (0, . . . ,0) is 12jps and the probability of
any other element in the set isps . At each diffusion time
step we associate, according to the probability distributi
one element of this set to every particle in the lattice in or
to decide if it is going to be moved and in which direction
will be moved. We see from Eq.~A2! that f s(rW,vW i ,t1t/2)
only depends on the total number of particlesNs at the pre-
vious timet ~and the set of random variablesz j

( i )), but not on

the individual values of the distributions,f s(rW8,vW i ,t), at the
neighboring sitesrW8. From Eq.~A2! we also conclude tha
the total number of particles at timet1t/2, Ns(rW,t1t/2),
only depends on the total number of particles that reside
neighboring sites at the previous timet.

The dynamics on the lattices that we associate to e
speciess is coupled by the chemical reaction. The reacti
operation is local in space, i.e., it involves only one node
the stack ofŜ lattices. The reaction operatorR allows each
reactionr to occur with a certain probability~associated to
kr) which is independent of the particles velocities, and,
those that do occur, it subtracts or adds the appropriate n
ber of particles as dictated by Eq.~A1!. Thus, the reaction
operator only affects the total number of particles at ea
node in the following way:

RNs~rW,t !5Ns~rW,t !1 (
l 51

R

~bs
l 2as

l !hx,l , ~A3!

wherehx,l is a random boolean variable. Ifhx,l 51, then
the l th reaction takes place at the lattice siterW. The link
between the probability distribution of the random boole
variable and the reaction rules that give the proper c
tinuum limit, is achieved by choosing a function that d
pends on the occupation numbers~see@29# for a complete
discussion on this topic!.

From this discussion we immediately conclude that it
sufficient to work with the total number of particlesNs at
each node and time, i.e., it is not necessary to keep trac
3-13
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the particles’ velocities, as mentioned in Sec. III. Some ot
points are worth mentioning too. First, that lattice gases
reaction-diffusion systems do not suffer from the same s
of drawback that other kind of lattice gases~in particular,
those used to model the Navier-Stokes equation! do. Namely,
for RLGA there are no spurious conservation laws associa
ics

. B

hy

of
e
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with a square lattice geometry. Second, we want to emp
size that it was unnecessary to choose a particular reac
rule to derive the analytical results in Secs. III and IV. This
so, because any particular choice of the reaction oper
should project, in a similar way, the mean concentration v
ues onto the local equilibrium values of each species.
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