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Slow time evolution of two-time-scale reaction-diffusion systems:
The physical origin of nondiffusive transport
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We study, from a mesoscopic point of view, the slow time-scale dynamics of a mixture of chemicals in
which there is a chemical reaction that occurs much faster than all other processes, including diffusion. For a
simple paradigmatic model reaction, it is possible to find a reduced set of dynamical equations analytically.
This procedure, which yields the same mean field equations as the macroscopic approach described by Strier
and DawsorjJ. Chem. Phys]12 825(2000], clarifies the physical origin of some of the terms that appear in
the reduced reaction-diffusion equations, such as “negative density dependent cross diffusion terms,” whose
actual meaning is hard to assess within the macroscopic framework. We also present a two-time-scale reactive
lattice gas automaton with which it is possible to check the validity of the analytical results and the conditions
under which the reduced description holds. Using this lattice gas we also show how the differential interaction
with immobile species can give rise to the formation of stable Turing patterns in a system where all the other
chemicals diffuse approximately at the same rate.
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[. INTRODUCTION fusion) term DJ-VZS]- is a consequence of the random walk
that the particles of each species perform due to the nonre-
During the last decades, self-organization in nonequilib-active collisions with the solvent, which is supposed to be
rium systems has attracted the attention of an increasing fracauch more abundant than the solute speces Similar
tion of the scientific community. Theoretical, experimental,equations also arise in other physical contexts in which the
and computational approaches to the study of pattern formararious variables and terms have other meanings. One of the
tion have provided a deeper understanding of the mechaims of the theoretical approach to these problems is to pre-
nisms of self-organizatiofi,2]. Among nonequilibrium sys- dict what sort of solutions are likely to be reached at long
tems, chemical reactions are paradigmatic. There is #mes, starting from a given initial condition. Usually, ana-
growing interest to unravel the physics underlying its rich-lytic solutions are out of reach and other approaches are fol-
ness of behaviors, which includes: excitability, bistability, lowed to study and classify behavidi& 7]. It is thus impor-
oscillations, different types of chemical waves, and the fortant to develop approximate analytical methods to simplify
mation of stationary inhomogeneous structures. Fundamenttiie systems, and to gain insight into the behavior of the
questions concerning reaction-diffusion systems also arise iaquations.
the biochemical and biological realfi3,4]. The theoretical Part of the interest in reaction-diffusion systems grew out
starting point is usually a set of deterministic equations ofof the seminal work by Turin§3], who pointed out that the
motion in the form of partial differential equations for the interplay between nonlinear reaction kinetics and diffusion
concentrations of the chemicals. These are the so-callegrocesses could produce stable inhomogeneous patterns. In
reaction-diffusion equations this way he introduced a simple mechanism that could ex-
plain the occurrence of spatial patterns in bioldgge, e.g.,
] 5 _ [4]). Although there is no definite proof that this type of
= (S S)+DVES, Isj=n, (1 mechanism is at work in any real biological system, there are
some interesting results in this seri§e9]. For many years,
- , ) . Turing patterns could not be observed in laboratory experi-
where S;(r,t) is the concentration of thgth speciesS; at  ments, partly because they need the chemicals to diffuse at
time t and positionr, andD; is its diffusion coefficient D;  different rates, and this was hard to achieve in the dilute
=0). These equations describe the averaged behavior due &ueous systems that the community was focusing on. When
the microscopic processes of reactive and nonreactive collifuring patterns were finally observgét0,11], a heuristic ex-
sions. Namely, thgusually nonlineartermsf;, in Eq. (1)  planation was provided of why the various chemicals could
represent the change in the concentrations due to the chemiffuse at different rates: it was the interaction with immobile
cal reactiongusing the law of mass actioib]) and to the  speciegnamely, the gel where the reaction proceeds and the
feeding and removal of the reactants, while the trangplifit ~ starch molecules that are used for visualizatithat effec-
tively rescaled the diffusion coefficient of one of the species
involved in the reactiorfiodide in this case[12]. The idea

*Email address: strier@df.uba.ar that diffusion is rescaled by the interaction with other species
"Email address: ariel@df.uba.ar (buffers is also widespread in biology. For example, the in-
*Email address: silvina@df.uba.ar teraction of calcium ions with buffefd 3] can explain, under
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certain assumptions, the dependence of calcium diffusion oim excess, the final equations are of reaction-diffusion type,
calcium concentration in the cytoplagih4]. The effect of in which case a clear physical picture can be establisbee
different sorts of buffergboth mobile and immobileon cal-  following section. In all other cases, the physical meaning
cium diffusion and transport in general is a subject of greabf the nondiffusive transport terms is hard to assess. In order
current interest, since it is believed that buffers tailor thetg obtain a physical picture, in this paper we analyze the
repertoire of spatiotemporal behaviors that the calcium conpedyced description from a more microscopic point of view
centration can displaj15-17. Calcium is a universal sec- ang determine what sort of thermodynamic force the nondif-
ond messenger that is used by most cells for signaling purfysjve transport terms represent. To this end, we introduce a
posed 18]. Thus, by the differential interaction with buffers, 14 time-scale reactive lattice gas automaton with which we

the calcium concentration can behave in various ways thgl,jarive the reducedmean-field equations analytically,

ev?rr;]tgagzégrsluila In g(;frfﬁrrneonr: efggtafspi?]nfﬁgé WO TYDES ofstarting from a mesoscopic picture, and which we implement
ying ) . yp numerically for different situations of interest. The result is
problems(Turing patterns in laboratory experiments and Cal_that the extra terms that appear in the reduced equations are
cium dynamics in the presence of buffers, on one hand, - "pp . B d .
Jot truly “transport terms,” but some kind of “remnants” of

the existence of at least two very different time scales in th ) : .
reaction-diffusion system. In fact, the rescaling of the diffu- the fast reaction. The fast reaction correlates the local densi-

sion coefficient of a given species is obtained if the reactior{i€S Of the chemicals and those terms represent the reaccom-
with the immobile buffers occurs much faster than diffusion.modation of these densities to satisfy the correlation condi-
The other common feature is the fact that it is the slow timelion after it is perturbed due to the diffusive transport of the
variations that are of interest, while the dynamics of the buff-chemicals. The physical picture also provides a better under-
ers or of the immobile species in the case of the experiment&itanding of the accuracy of the reduced description, which
Turing patterns is not. With these two basic ideas in mindwe probe with the numerical simulations. All the analytic
the aim is then to obtain a reduced description of the slowcalculations are done for the case in which E).is the only
time dynamics in which at least some of the species havehemical reaction that occurs in the system. However, the
disappeared as dynamical variablesually buffers or en- conclusions that we draw can be extended straightforwardly
zymes. We derived this reduction systematically[it9] us-  to the more general case of the arbitrary reversible fast reac-
ing a two-time-scale analysi®0]. In order to do this we tion that we treated if19] or to systems in which other
applied perturbation method&eveloped basically for ordi- (slow) reactions coexist with the fast reactit®). In order to
nary differential equationgto a case in which the dynamics jjlustrate the last assertion, we show some numerical simu-
is de;cribed by partial diﬁerential equations.'We did this injations of the Schnackenberg mod@H] in the presence of
deta!l for the case of one revers_lble fast reaction. I\_lone of theén immobile substance that interacts with one of the chemi-
previous _attemp_ts to_handle this type_of problem involved g 45 according to Eq2). Such a system mimics the main
systematic multiple-time-scale reduction. Furthermore, the¥sares of the laboratory experiments in which Turing pat-
dealt with the paradigmatic buffering equatifi] terns are observe@vhich is a consequence of the differential

K, interaction with an immobile speciedn fact, we show that
A+ B=C (2)  the presence of the immobile species yields Turing structures
k in a region of parameters where otherwise stable patterns

would not be found.

The paper is organized as follows: in Sec. Il we review
the reduction of a reaction-diffusion system within the mac-
roscopic framework applying it to Eq2) and discuss the
limiting case in which the final equations are of reaction-
diffusion type. In Sec. lll the fundamentals of the theory of
lattice gases are briefly mentionddr a complete review see
[25] and references thergjrand an analytical approximation

giving rise to what is now called thiast buffering approxi- of the lattice gas theory suitable for two-time-scale systems

mation The analysis of13] mostly focused on the case in is described. In Sec. IV we apply these ideas to t_he rea_cti_on
which the only relevant processes were the fast rea¢ipn (2), and show how the results of Sec. Il are reobtained within
and diffusion. this framework. In Sec. V we describe various numerical

The main motivation for the work that we describe in thisimplementations of two-time-scale reactive lattice gas au-
paper arises from the following feature of the reduced evolomata and show the results of different simulations. Some of
lution equations obtained iL9]: even if we start from a set the simulations are done to check the validity of the analytic
of reaction-diffusion equations of the form of EfL), the  results. Other simulations are done to study the effect of the
final equations are not always of reaction-diffusion type. Furfast reaction on the formation of patterns. In particular, we
thermore, they contain terms that involve various combinashow that the Turing space of the Schnackenberg model is
tions of concentration gradients and concentratibmich  enlarged by the fast interaction of the chemicals with an
should be associated with nondiffusive transport t¢rms immobile species. Finally, we discuss the central points in
Only if the fast reaction involves an immobile species that isthe Conclusions.

in which A is one of the species of interdgtg., calcium, B

is the free buffer, and is the complex that is formed when
A binds toB. On the other hand, th@nostly) heuristic ex-
planations that appear {i22] or [23] hold if the buffer is
immobile and in exces&he concentration of, B, is much
larger than the concentration gf, A). The case of calcium
reacting according to Eq2) in the presence of any amount
of either mobile or immobile buffers was addressed1if],
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1. MACROSCOPIC APPROACH: REACTION-DIFFUSION

EQUATIONS 0. L o o
Let us consider a system described by Ed3. Let us ., o 'J ‘ o .
assume that there is some reaction that occurs much faster ey ioe
than the rest of the processes, so that we can define the small o % 0 E e
parameters<1 as the ratio between the fast and the slow °*, ', '. . .
time scales. Then a perturbative analysis in terms ofiay . B i e '.
be done and a reduced description of the slow time dynamics L X@=0) * <
may be obtained. We discussed the general cagEdiin and o o ! o
over here we will only quote the results in some particular ¢ e e o X(=T)
cases. Let us assume that there are three spé&giesd,
S,= B, andS;=C, whereA, B, andC react according to Eq.
(2), on the fast time scale, i.ek,_ ,k,~O(1/e), while the (@
rest of the parameters are of order one or higher.ihet us
assume that this is the only reaction in whiBhand C are ¢ 0 % 2 5 % e o o °
involved, and that these species are not removed or fed from . ¢ °
outside the region where the reactions take pldce gel in ! 'Ts ¢ & N .
the case of the expenm_ents in which Turlr)g patterns.are o, .° * : 0’® 0o * o
observed or the cytosol in the case of calcium dynamics 0 i o= . ° .
Thus, the reaction-diffusion syste(t) that we are dealing °. @ o i X@=1) . 0.
with is of the form o C " o .
[ ] [ ] X(t=0) I.;' ° L] 0 @
A . °
(Z—tz—k+AB+k_C+g(A)+DAV2A, 3 & e 00 ot 00 . . °
. )
%: —k,AB+k_C+DgV?B, (4) ©)

FIG. 1. Random walk of anl particle in the presence of solvent
—t=k+AB—k_C+ Dc.V2C, (5) molecules, drawn as filled circlgs), and in the presence of both
J solvent and3 particles(b). While in (a) the collisions are nonreac-

h h . fth . tive and theA particle is free all the time, ifb) it remains bound to
whereA, B, andC are the concentrations of the various SP€-gach particle with which it reacts, to form the compléxduring

cies,Da, Dg, andD¢ their diffusion coefficients, and the g time of the order of K. .
term g(A) represents the slow chemical reactions in which

the species is involved and the feeding and removal of this

species. The boundary conditions will be either no flux or — = —T'z,g+(1—Tsg)DgV?B—T'gaADAVZ?A+(1—Tpg
periodic. Although this is a relatively simple system, the cal- Jt

culations we describe here can be easily extended to the case k.,

in which there are some additional species that are only in- —FBA)k—DC(BV2A+AVZB+2VB-VA), (7)
volved in slow reactiongsuch as in the Schnackenberg sys- -

tem that we simulate numerically in Sec).\On the other

hand, calcium dynamics in the presence of one buffer is C= kiAB )
modeled by this set of equations. Although the case of actual ko'
experiments in which Turing patterns are observed is much

more complicated than the Schnackenberg model, we thinwhere

that our study captures the essential features regarding the

rescaling of the diffusion coefficients. Following the calcula- AB=———— FBAZL ky= ko (9)
tions described ifi19] we obtain that, after a short transient kg+A+B’ kg+A+B’ ki’

(of ordere) the various concentrations approach values that ] )

evolve on the slow time scale according to andg is a function ofA.

Both in the case in whicB andC are immobile and in the
IA case of the dynamics of cytosolic calcium in the presence of
i (1-Tga)g+(1-Tza)DAV?A—T 4gDV?B buffers, the diffusion coefficients of the free bufie@g and of
the complexD are similar. Therefore, we will further as-

K, sume thatD-=Dg. It then follows that, if att=0 it is B
+ (1_FAB_FBA)k_DC(BV2A+AVZB +C=B+, with B homogeneously distributed in space, then
B B+ C=Bg at all points in space during the whole evolution.

+2VB-VA), (6)  This follows clearly from adding Eq$4) and(5). Using this

046233-3



STRIER, CHERNOMORETZ, AND DAWSON PHYSICAL REVIEW B5 046233

conservation law the syste(6)—(8) may be further reduced tures the essentials of the microscopic reactive molecular dy-
to one evolution equation fok plus the algebraic equations namic schemé25,27]. Within this framework, each species
B=kyBt/(kg+A) and Eq.(8) [26]. Clearly, this final evo- s described by the number of particles of each given veloc-
lution equation is not, in general, of reaction-diffusion type.ity residing at the sites of a regular lattice. The evolution
Furthermore, even in the case in whi€c=Dg=0, for  occurs at discrete time steps, when each particle undergoes a
which most of the terms vanish, the transport of #igpar-  random walk between the lattice sitéiffusion), and reac-
ticles is not exactly diffusive, since the effective diffusion tive collisions occur(when a certain number of particles
coefficient, (1-I'ga)D A, is concentration dependent. There meet at a lattice site a reaction occurs according to some
is a limiting case in which the dependence on the concentrasrescribed probability Lattice gas methods are clearly faster
tion can be neglected, namely, when the solution is so dilutg,4 fyll molecular dynamics simulations, because they in-
that A<ky andA<By. In that case, the effective diffusion o\ some degree of coarse graining that allows the study of
coefficient is (I-I'ga)Da~Kq/(kg+Br)Da. This has a  ne ayolution for long time scales, treating the shorter time
clelezx_r microscopic mterpréetatlonhthat we illustrate in Fig. hl scales in a simplified fashion. Most RLGA assume an exclu-

_Figure 18 corresponds to the microscopic picture t & sjon principle that restricts the number of particles of each
gives rise to the usual diffusion term. In this case, the ; ; . . . .
particles perform a random walk due to the nonreactive col>PECIes at a node, with agiven vel_ocr[y. The eXC'US'.OU prin-
lisions with the solvent molecules. Thus, the mean distance ciple allows the dynar_mcs to b_e 5|mu|ate_d very efﬁmently,
that the particle transverses during a total tiliecales as and also prevents particle density from building up in certain
L2~TD,, with D, the diffusion coefficien{which is pro- egions of space. On thg other hand, it Ieads to restnctlons.on
portional to the mean free path of thé particles in the both the species densities and the complexny of the reaction
presence of the solventFigure 1b) corresponds to the case Schemes to be analyzed. Furthermore, it causes the particles
in which the A particles also react with an immobile buffer t0 obey a Fermi-Dirac statistics that is difficult to justify on
that is in excess3. Thus, when eacht particle moves in the ~ Physical ground$28]. In this paper we abandon the exclu-
medium, sometimes it encounters a solvent molecule witt$ion principle, and allow for an arbitrary number of particles
which it collides changing its direction instantaneously, andto reside at each node of the latti@8—30. This is not the
other times it encounters B particle and, with a certain first time that the exclusion principle is dropped for reactive
probability, reacts and stays bound to it for a tiffe  lattice gas automata. In fact, our numerical implementations
~1/k_. Then, if one looks at one particle during a total time of the lattice gas follow Ref29] in one case and Rdf28] in
T, only a fraction of this timeT; is used by the particle to another one.
move around. Then, the mean distarigan this case, will As mentioned before, lattice gases imply some degree of
scale with the fractiol; asL?~TD,, whereD, is propor-  coarse graining. We assume that each node represents a
tional to the mean free path in the presence of both solvenieighborhood occupied by a large number of particles. Thus,
andB particles. However, if the solvent is much more abun-our description cannot describe inhomogeneities that occur at
dant thanB, then we may assume that,~D . Notice that  spatial scales that are smaller than the distance between two
this condition is completely hidden in the macroscopic denodes. Given that we do not use the exclusion principle,
scription. If the concentratioB is much bigger tha, then  keeping track of the particles’ velocities becomes unneces-
most of thel3 particles will be free at any given time so that sary. Namely, the diffusive transport term is modeled by a
B~By. This also implies that one can look at eadhpar-  random walk in which each step is independent of the pre-
ticle independently, without having to consider what theyious one(in the sense that the direction in which a particle
other A particles are doing at any given time. Then we maymoves during one step is not correlated to the direction of the
estimate the number of reactive collisions that ohparticle  preceding step while the probability that a chemical reac-
suffers during the total tim& ask, BTy, since it can only  tion occurs is velocity independent. Therefore, we will de-
react while it is free(i.e., during the fractionTy). If the  scribe the dynamics in terms of the total number of particles
particle stays bound during a tinfflg~ 1/k_ after each reac- of each species at a node and given time, regardless of their
tion, then the total time during which it is bound is velocity. In the Appendix there is a more detailed description
kB+T¢/k_, and the fraction during which it is free satisfies of the dynamics in which we show that this point of view is
Ti=T—k,B{T;/k_ from which we gefT;=kqT/(ky+B7). in fact correct. Since we are interested in the derivation of
This implies thatL?~TDuky/(kq+ B1). Thus, the transport the macroscopic description from the microscopic one, most
is diffusive with an effective diffusion coefficient that is of the theoretical analysis that we present is done at the level
equal toDpkq/(kq+ Bt). Although this limiting case has a of a lattice Boltzmann scheme, i.e., in terms of averages.
clear microscopic interpretation, the physical meaning of_attice Boltzmann methods are somewhere in the middle
what we could call cross-diffusion terms or of the nondiffu- between reactive lattice gas automata and finite difference
sive ones that appear in Eq$) and(7) is not clear at all. In method{31]. They are suitable whenever one is interested in
the following sections we try to elucidate the physical meanthe evolution of averaged quantities.
ing of these terms by determining what their microscopic
origin is.

A. A two-time-scale lattice gas

I1l. MESOSCOPIC APPROACH: LATTICE GAS THEORY . .
The key part of a RLGA is the construction of an evolu-

Reaction and transport processes can be modeled Lion operator that gives the state of the lattittee occupation
means of a reactive lattice gas automatBhGA) that cap- number at every nodefter the reaction and transpddif-
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fusion in our caseoperators are applied to the previous stateciency of diffusion for mixing the particles throughout the
A useful way to write the evolution operatég for the spe- vessel, and the repeated actiorof, that rapidly correlates
ciessis [38] the concentrations of different species at any given node of
£= O (RT), (10) the lattice, prevents us fr_om app_lying the Ia'gter assumption.
In order to obtain a continuous limit, the existence of such
correlations poses a hard obstacle. Howevel, i large
enough another useful approximation can be performed: it
may be assumed that the mean concentrations of the various
chemicals approximately reach local equilibrium valties.
These values may be different at different lattice sites, and
ill depend only on the initial conditions, i.e., the local equi-

wherese S, and S denotes the set of all the species. The
operator® with a +14 superscript meank, applications of
the transport operatdffor every reactive operatioR, while
a — Il superscript indicates one applicationbeveryl of
‘R. This form of writing the evolution is suitable for numeri-
cal purposes, because the desired relations between the . . Do
fusion coefficients of different species are easily incorpo-I rium values at each site before' the application of the re-
rated in the simulations. As we will show, it is also useful for action operator. In order to gxp!alp why the assumption of
systems with two different time scales, as the ones we arlé')cal equilibrium may be valid, it is useful to think of the_
interested in. In particular, we want to describe the evolutions_yStem as composed of a large number of Sm??l” cells with
on the slow time scale of systems in which some of the&des of sizex, centered at each node of the lattice. For the

reactions occur on time scales sensitively faster than othettganSport of particles b_etween cells to be diffusive over the
and diffusion. In order to simplify the discussion we present!M€ scaler (and effectively modeled by a random walk, as

here a detailed analysis of the case in which there is only ongXPlained later each particle needs to collide several times
reaction, which is fast, while diffusion is the only slow pro- with solvent molecules during the time This implies that
cess. The results can be easily extended to the case in whilh® Mean free pathe and the mean frequenaye of nonre-

there are other slow processes, in particular, slow reactioné‘.‘ftl'Ve collisions satisfyAg<A, vc7>1. However,x and
To this end we take a relatively large time stephalf of 7+ cannot be chosen as small as we wish because there is

which we divide in several shorter time steps of Siz&he another constraint: the number of particles inside a cell can-

ratio T/ 7 represents the ratio between the reactive and diffu’°t change too much during the timeif we want to ap-
sive time scales. The update of the distribution of particlefroXimate its time derivative by the ratio between its change
from time't to time t+ 7 consists of one transport step that @1d7- Thus, very few pa_rtlcleszmust leave the cell during the
evolves the distribution from timeto timet+ 7/2, followed ~ time 7. This is satisfied iD 7/A"<1. This second condition
by | reaction steps|& /2T) that evolve the distribution also implies that individual cells can bg we_II approximated as
from t+ /2 to timet+ 7. This splitting is convenient from closed systems on the fast time scatéich is much shorter
the analytical point of view. It is reasonable for numerical than 7). Therefore, the application of the *full” reaction op-

implementations provided thatis small enough so that the eratorr 7, insid_e each ceII,_ yields mean values for the vgri-
fraction of particles that move from one site to a neighboring®Us concentrations or, equivalently, mean number of particles
Ng=(N;) that satisfy the equilibrium relationship if

one during the timer is also small. In fact, we checked the

validity of this approximation as we describe in Sec. V. Ac-> Teqs With Teq the time it2takes for the reaction to equili-
cording to this splitting, the reaction operat@ris decom- Prate. The condition®7/A“<1 and r>Teq imply that A
posed as > \DTeq Therefore, the equilibrium condition will be valid
. Tt T provided that the macroscopic quantities do not vary over
RT=R R e---°R, (11 length scales that are too small. The following diagram
whereR T appears/ times and the action of the evolution Shows the evolution from a set of initial conditiong(r,0)
operator€ "=R 7" can be formally written as yielding mean valuedlg(r,t)=(Ny(r,t)):
N t+ 1) =ETN(r, D], (12) - - -

- Ng(r,0)—Ng(r,7/2)— NEY(r, 7) —Ng(r,37/2
where the stochastic variahfeé(r,t) is the number of par- s(1O) = N(r, 7/2) = NAr, 7) = Ny(r, 37/2)

ticles of species that occupy the node of the lattice located

atr, at timet. Since we are interested in the slow time-scale RT U 77
dynamics, we consider the evolution in time steps of size —=Ngi(r.2n)— ..., (13
The lattice spacing will be denoted hy _ R

For the purpose of deriving the continuous limit from the where Ng(r,n7) =Nc%r,n7) (ne N,n#0) are supposed to
microscopic dynamics embodied in the explicit form of thebe equilibrium valued,and where we have supposed that
evolution operator, two assumptions are usually made. Firshoth 7" and’R ” advance time by the same amout2. The
it is supposed that the number of molecules of a given spe-
cies varies smoothly over several lattice spacings. Second, it——
is assumed that the ensemble average of the product of théHere, the mean concentration corresponds to an ensemble aver-
occupation number of different species can be broken intage of\Vy(x,t) over several independent realizations. In Sec. V, this
the product of the averages of each species separ@®ly  assertion is numerically proved.
ally referred to as thenolecular chaoshypothesis While 2We will suppress in the following the superscript denoting equi-
the former hypothesis can be fulfilled in our case, the ineffidibrium at timest=nr with ne N, .

046233-5



STRIER, CHERNOMORETZ, AND DAWSON PHYSICAL REVIEW B5 046233

scheme depicted in Eq13) emphasizes the fact that, be- reaction rule must project the local concentration to equilib-
cause of the large difference between the times scales oveum values on the slow time scale.
which reactions and diffusion occur, diffusion essentially

acts over local equilibrium values that are determined by the IV. APPLICATION TO THE CASE A+B=C
relative abundance of the different species before the appli- _ _ _ o
cation of the reaction operator. In this section we apply the ideas described in the preced-

As we have already mentioned, we assume that transpotd section to study the reacti¢@). To this end, we first note
is only due to the elastic scattering of particles of the varioughat as there is no feeding or removal of chemicals, the whole
species,se S, with solvent moleculegi.e., we consider a sg/stem IS clossezd. TI_?]US Some&jam'tgs arz gonselrvetlj during
dilute solution. The following fact is hidden in this kind of (he reactiong32]. The sum ofA (or B) and C molecules

description: reactive lattice gas automata treat nonreactiv: ver all the nodes of the'lattlg:e IS clearly C.OH.SENEd’ because
the creation of one type implies the annihilation of the other.

collisions only in a coarse-grained approximation. On the other conservation law arises because each reaction leave
time scales that these lattice gases can resolve, the velociti 1er conservatl W arses us r lon leaves
ne difference between the total number . dfand 5 mol-

are not correlated, and each particle can be viewed as pe i
ecules unchanged. But these conservation laws are global,

forming a random walk. If the medium is supposed to be dd : vt h cell telv. b diffusi
isotropic, the action of the transport operafdris to let each and do not apply 10 €ach Cell separately, because ditusion
| can add or subtract particles at each node independently of

article move to any of it§ neighboring sites with an equal . ; )
grobability D., o tg remiin s%ationar%/ with probabilig/ 1 reactions. Instead, the following local relations should hold:
S

—¢ps (no advection is presentwhere ¢ is the number of N (X t+ 72)— Na(X T+ 72)=Na(X.t+ 7) — Na(X.t +
nearest neighborséE2 in one space dimension arig-4 At 712) =Na(X,t+ 712)=Na(x, t 7) = Na(Xt+7),
for a square lattice in two space dimensipri=or simplicity (16)
we will consider, in this discussion, a one-dimensional lattice

where the coordinate is denoted syHigher dimensions can t4 7/2)+ N (Xt + 72) = Na(X.t+ 7) + Ne(X T+

be handled equivalently. We can write the transport operator AU+ 712) + NeOx, t 72) =NaX 1)+ Ne(x, U 7),
formally as[29] (17)

NB(X,t+ T/2)+ Nc(X,t+ 7'/2): NB(X,t+ ’T)+Nc(x,t+ 7'),

M

1 ©
N t+ 712 =TN(x) = 2 21 2 i
: (18)
X HN(X+Ni,t)— ), (14
wheret=nr. Note that Eqs(16)—(18) are not all indepen-
where the first sum runs over the components of a randorflént: These equations reflect that, during the successive ap-
plication of the reaction operator on the fast time scale, each
cell behaves as a closed system. The equilibrium
concentrations—those reached after every application of the

projectorR —satisfy the algebraic relation

triplet ;;X,i taking one of the values (1,0,0), (0,1,0) or
(0,0,1) with probabilitiesps, 1—2pg or ps, respectively,
and H is the Heaviside function defined y(y)=1 if y
=0, andH(y) =0 otherwise.

The macroscopic description is obtained by taking an en- A(X,t+ 7)B(X,t+ 7) =kyC(X,t+ 7), (19
semble average of/5(x,t) over several independent realiza-
tions of the system. In practice, however, this average igyhere
assumed to be equivalent to some coarse graining or time

averagd 28]. The action of the transport operatd#) on the A(X,t)=Npa(X,t)/N, B(X,t)=Ng(X,t)/X\,

mean occupation number reduces to moving a constant frac-

tion of particlesps (generally different for each specje® C(x,t)=Ng(X,t)/\. (20)

each neighboring cell. Using EqL4), the evolution for the

mean numbers can be written as These equations can be used to obtain the equilibrium values
of the local numbers of molecules, as a function of the initial

Ns(X,t+ 7/2)=Ng(X,t) + P Ns(X+ A, 1) + Ng(X— A, 1) values. Solving Eqs(16), (17), and (19), the non-negative
roots are
—2Ng(x,1)]. (15

1
Using the conservation laws and the relations among the NaOG U )= S INAG U 7/2) = Np(x, U 7/2)

(mean densities at equilibrium, it is possible to write down _

the values oN¢(x,n7) at each node of the lattice as a func- —kgth(x,t+7/2)], (21)
tion of its initial valuesN¢(x,n7— 7/2) (before the applica-
tion of 77). Then, a closed system is finally obtained in the
form of a coupled set of master equations. Note that this
procedure makes it evident that the explicit form of the re- .
action operatorR T is not important. In fact, any sensible —kq+h(x,t+7/2)], (22

1
NB(X,t+ T): E[NB(X,t+ 7'/2)_ NA(X,t+ 7'/2)
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1 and then this term would not induce a time variatiorNg{.
Ne(X,t+ 7) = S[Na(X,t+ 7/2) + Ng(x, 1+ 7/2) Furthermore, if the number of particles is large and/or the
probability of having a reactive collision increases, this ef-
+2 Ne(X,t+ 7/2) + kg— h(x,t+ 7/2)], fect becomes stronger. The derivation also makes clear the

key role played by the correlations introduced among the
(23 concentrations on the fast time scéakeg. (19)]. This equa-
tion underlies both, the above reasoning and the prefactor

h L . o
where that multiplies the time variations di, (andNg).
h(x,t)=[(Kq— Na+Ng)2+4ky(Na+ No) Y2 (24 _ The final step is to find the_ continuum limit of these_equa—
(X1 =[(ks=Na+Ng) a(NatNe)] 24 tions. The usual way to do this is to let~0 and\ — 0, with
I . 2 . . g . .
andky=kg\. the ratio A</ 7 finite. Writing the concentrations as in Eq.

(20), multiplying Egs. (29 and (30) by 1/7, defining D4

From Eqgs.(15) and(16), it is straightforward to show that X X
Gs{(15) and(16), it 9 W =paN2/ T andDg=pgA?/ 7, and taking the above-mentioned

ANp—ANg=psDar—pPsDs, (25 limit, we obtain Eqgs.(6) and(7) with Do=0. Now we see
that behind the diffusionlike appearance of some of the terms
where we have introduced the notation in these equationgie.g., the self-diffusion and the cross-
diffusive termg, there is a common chemical origin. The fact
ANg=Ng(x,t+7) = Ng(X,1), (26)  that they can be expressed in the form of a Laplacian is
because the differences in the concentrations of neighboring
De=Ng(X+\,t) +Ng(x—\,t) —2Ng(x,1). sites regulate the rate of the reactions.

. . : In th h ie. h -
Equation(25) emphasizes that the only source of difference, n the case w er@C¢Q (.., pc#0), the same reason
: . . . : —77ing leads us to the equations
in the relative number ofd and 3 particles in any lattice site

during the time stepr, is due to the action of the transport ANp—ANg=paDa—pgDs, (3D
operator over each species.
For simplicity we first sepc=0 (i.e., C does not diffuse ANp+ANc=paDPa—pcDe,

Then using Eq(15) and Eq.(17) we find
ANg+ANc=pgDs—pcDc,
ANA"FANC:pADA. (27) B ¢ BTE cre
from which we get Egs(6)—(8) in the continuous limit.
Because the differenceésNg are evaluated at equilibrium by
construction, we can make use of Ef9). Then V. NUMERICAL IMPLEMENTATION OF THE

— TWO-TIME-SCALE LATTICE GASES
deNC:NAANB+NBANA+ANAANB:NAANB
In this section we describe the numerical implementation
+NgAN,. (28 of two (closely relategitypes of reactive lattice gas automata,
that follow the ideas described in the previous sections. In all
cases the evolution operatér(i.e., the combination of the
reaction and transport operatbects on a regular lattice of
—paDaA— ﬁ(pBDB_ paDA). sizelL (Iinear or squarewith periO(_jic boundary cond@tions..
Kq As mentioned before, we do not impose the exclusion prin-
(29  ciple in any of these versions.
o ) We also present some numerical simulations that we per-
Proceeding in the same way we find formed with these lattice gases. First, a situation in which
there are three specied, B, andC in a closed vessel that
react on the fast time scale according to E2).and diffuse
on the slow time scale. Initially3 andC are homogeneously
(30)  distributed and there is a local accumulation.4fparticles
that starts to spread within the system. In this case the non-
Equation(29) [which is completely analogous to EG30)] linear rescaling of the diffusion coefficients is only a tran-
isolates two components responsible for the time variation oient effect because the system is unable to support inhomo-
N, at a given poinix. One of them simply accounts for the geneous structures, so the density-dependent diffusion
transport of particles towards and froxn The other one is coefficients approach constant values. In spite of this, the
the most interesting. It indicates thhl, and Ng can also  simulations are good to check the validity @f the slow-
change due to the chemical reaction: when the chemicalme-scale reduction of the evolution equations, testing its
equilibrium is disrupted by the arrival or departure4ior 5 limits of applicability, (ii) the physical interpretation that we
particles during the diffusive step, ti{gas) chemical reac- provided of the microscopic origin of the various transport
tion establishes a new equilibrium and this is reflected interms.
these other terms. Also, if the arrival gf and 3 particles is The second situation that we have simulated is one that
perfectly balanced, the chances for reacting do not changmay support stationary inhomogeneous structures. Namely,

Now, we can solve for the variation &, as

AN,

1
1+ = (Na+Np)
Kqg

ANg

1
1+f(NA+ Ng)

Ng
=pgDs— F_(DADA_ PgDg)-
d

d
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we have simulated an open system with six specigss,, 100 — T T T 7]
X, Y, B, andC, that react according to the scheme o, i 587
80 A0
t 20
Ky ka k3 % - //,’,60 b
A=2X, V—S,, 2A4+S8,—3A4, g 60 W Aty
k*l % B /é‘ - ’; o " N
° e Py e
g 40 . ’_6‘10’/646 o® /¢,__—
Kig § - 6/2, pry. o /’_,—:;§ 02 pa
A+B=C. (32 s 20l gaf _/3—53;_5}.?9—"-"
k-4 B L g :
] ] ) i 0 et | 1 | !
The set of the first three reactions in E§2) constitute the 0 50 100 150
so-called Schnackenberg mo@i24]. By keeping the concen- slow time scale (arb. units)

tration of X and ) at certain nonequilibrium values, it is _ _
possible for this system to display homogeneous periodic FIG. 2. Net mean-square displacementbparticles as a func-
oscillations in the concentrations gf andS,. Furthermore, tion of time measured on the slow time scale in a square lattice with
if the ratio between the diffusion coefficients=Dg/D, is =50 C"C'ei CO_"eSp_O”d to N =75 000, NB:NC:_5OOO)'
greater than a certain threshold, stationary inhomogeneoguares 1 Na=Ng=Nc=75000), and diamonds ta\,=5000,
structures can also be forméd]. An important motivation e~ Nc=75000). For the three casesydike initial condition for
for studying this system is that it is believed that a similarA was used, Wh"ég andc were randomly d'St“bUtedi Th? Stra'.ght
mechanism controls some features of the unicellular Alga dash-dotted lines correspond to the case of pure diffusion pyjth
. - : =0.7 (steeper slopeand p,=0.2. The long-dashed lines corre-
etabularia The.eXplemge.ma;: evidence SquefStS_Fhe}t the reIépond to the mean-square displacement obtained with simulations
tealrinti nspt?l(i:;eso rlg;ﬁi\é?n :’:r; ia?gﬂfnari)nncsi(i Ca 2 J;”r;% dstru%f the reduced set of Eq$6)—(8) for equivalent parameter values
. ! and initial conditiong(see texk

cyclic-AMP (S,=cAMP) [4,33]. Nevertheless, there is a

roblem in proposing this simple model as an explanation of . .
Fhe observaﬁiorl?s: thg ratio be?ween ffree) diffusiopn coef- qell. Whe$her the r_eact|on act_ually oceurs after_each apph_ca-
ficients of C&" and cAMP is below the threshold value of 1" of _Rf or n_ot is also decided randomly, with a ce_rtam
the Turing instability. However, G4 is strongly bufferedn  Probability. During the other half, the transport operaiis
vivo. Then, it is possible that its diffusion coefficient is ef- apphe((jj to one set of rfaﬁdomlydch%s_en p;.ar_tlcles.h\_Nﬁ éry;fple—
fectively rescaled by its interaction with buffers in such amerr]]te tv;/]o Versions ot how LO o this sp |tft|n.g, w '(;] ! erh
way that the ratio of effective diffusivities and the rescaledPy now the ratllp bet_weehn t e. nurr:jlbe_r of times that eac
reaction kinetics allow for the formation of stable patterns.o_perat_Or is applied, IS chosen. while In one versiohis
With this in mind, we added the fourth equation to account!€d: in the other one it is chosen randomly among a set of

for the interaction of C& with an immobile buffer3. As in ~ values with fixed mean valué We compared both ap-
Eq.(2), we assume that the binding and unbindingofvith proaches finding a very good agreement between them. Most

B, occurs on a shorter time scale than any other process ﬁ)]f the simulations that we show correspond to the version
th,e systen? with fixed |. The transport operatofZ() moves each particle

The aim of this second set of simulations is twofold. First,Of speciess to any of its adjacent lattice points with prob-

we want to show that the conclusions obtained in Sec. IlI cal"f‘b'“ty Ps OF leaves it fixed with probability T 4ps. In all
also be applied to othdmore complex situations. Second, € Simulations, we assumed that the probabiy was
we want to show a simulation that mimics the main featuregréater forA than for 5 and C. This means that the free
of the laboratory experiments in which Turing patterns arediffusion coefficient ofA is larger than those of andC.
observed. Namely, that the differential interaction with anRegarding the reactions, we basically followed Rie¥9].

immobile species can enlarge the region of parameter spadd'® Scheme works like this: if there até, and Vg particles
for which stable Turing patterns exist. at a site, the reaction operator removes oh@article and

one 3 particle and adds one particle at that site, with prob-
ability PagNaNg . Conversely, if there ard/c particles, one
of them is replaced by ad and a3 particle with probability
We include here a brief description of the algorithms. INnP-A/. The short time stef is chosen so as to keep both
the first cas¢the only reaction is Eq2) and occur on a fast P,gNaNg and PN below unity for all times at any of the
time scale compared to the slow diffusion prodets® up- lattice points. The proper link between the rate constants and
dating process is split up in two. Namely, during half of thethe probabilities for a given reaction to occur, follows the
time step, the “one-step” reaction operator associated wittone described if29]. That is,k_. is associated with the ratio
the fast reactionR Y, is appliedl times (~ 7/T), each time  P,g/T andk_ to Pc/T. In all the simulations we usekl
to a new set of particles that are randomly chosen inside eachk_ /k,. =1 for the fast reaction.
For the schemg32) some minor changes were intro-
duced. The transport operator works similarly as the one de-
3This assumption seems to be reasonable for various endogenogsribed for the previous scheme. Regarding the reactions, we
calcium-immobile buffers, such as troponinf&4]. basically followed Ref[28]. For example, in the reaction

A. The algorithms
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A— X, a random number is picked for each particle to 200 — ' '
decide, according to a certain probabilitwhich we call

P ), if it transforms into anX particle or not. For the 150~ B ]
trimolecular reaction, the situation is a little bit more com- 100'_ B |
plicated: all possible triplets of twol particles and oneS, | | |
particle are listed and a random number is picked sequen 50 = |

tially to decide, with a certain probabilityP(s_, 4), if each
triplet transforms into thregl particles or not. If it does, then £< 0 M . .
all the triplets that contained the twit particles that reacted v L
are removed from the list. The sequence stops when a ran 159~ L -
dom number has already been picked for all the triplets. It is L L i
a simple mathematical exercise to show that this procedure 1gof — —
yields the law of mass action when the limit of a large num- - - .

ber of particles is taken. 50~ — =
L (© L (d) 4
. . . 1 I 1 1 I 1
B. Numerical simulations 0 200 300 200 300 400
We discuss first the results for the case of three specie: time (arb. units)

that react fast according to E@) and diffuse slowly. Figure
2 shows the time evolution on the slow time scale of the net FIG. 3. Evolution on the fast time scale i, andN," averaged
mean-square displacement of the particles of spedjese.,  over a 3<3 neighborhood around the exploratory point, located ten

> > 2 : lattice sites apart from the center. The same initial distribution as in
{[r(t) ~r(0)]%) where the average runs over allparticles o ™ ssed WitiN,= 250 000,Ng=Nc=100 000. The thicker
(its initial number being equal tdl,). The specied3 andC o C

o L . - curves correspond to the local equilibrium valuesNyf and the

were initially randomly distributed over all lattice sites, thinner ones to the actual number dfparticles. We usetl=10°,
while the A molecules were concentratgd on §<3 spot I=10%, 1=5x10%, andl=3x1C% in (a), (b), (), and (d), respec-
located at the center of a rectangular lattice of ize50. In
all the simulations, the free diffusion coefficient gf was
3.5 times greater than that correspondingd@nd C (pa
=0.7/4, Pe= pC:02/4) The curves Correspond to simula- Slty of Ais Small, have a hlgh probablllty of reacting, and
tions with different values of the relative initial number of consequently its effective mobility slows down. As the inho-
particles (N5, Ng, andNc). The value ofl was fixed at 1§ ~ mogeneity disappearsvhich is the ultimate fate for this par-
for all the simulations. We included as references two dashticular systen, the diffusion coefficients approach stationary
dotted lines that correspond to the case of pure diffusion witivalues that depend only on the initial densities, and the dis-
pa=0.7 (the one with the steeper slogpand p,=0.2. We  sociation rate. The curve with diamonds shows the case
found that, when the total amount ¢f particles released is WhenB is in excess with respect td. The behavior is again
in large excess with respect ) the behavior is practically almost diffusive, and the measured diffusion coefficient cor-
diffusive (linean, with diffusion constant very close to the responds to the slow diffusion of thé particles, i.e.,pa
free diffusion coefficientthe curve with the empty circles in =0.2 (at early times the slope is higher for the same reason
Fig. 2. This is intuitively clear, because the overwhelmingas explained befoje
majority of A particles are not bound forming Thus, they In order to contrast these results against the “effective
diffuse at their normal rate, since the reaction effectivelydiffusion coefficient” that the macroscopic reduced descrip-
operates over a small fraction of particles. The rest of thdion yields, we also show in Fig. 2 curves df?)(t)
particles move at their normal rate. When the amounBof = [Gr2[A(r,t)—A*(r,0)]rdr/[§[A(r,t) —A*(r,0)]rdr vs
particles is increased, the plot of the net mean square dig; with A(r,t) a solution of the reduced set of macroscopic
placement ceases to be a straight line, indicating that thequationdEq. (6) with Dg=D plus the algebraic relations
transport is not purely diffusiondthe empty square curye B=KkyB1/(ky+A) andC=AB:/(ky+A), in this casé¢ with
In this situation, it becomes apparent from the figure that theénitial condition A(r,0)=A* (r,0)+Na4&(r) in a circular do-
effect of the reaction cannot be understood as a simple resaain of radiusR= 25, with boundary conditio@A/dr =0 at
caling of the free diffusion coefficient by a constant factor.r =R. Notice that the initial conditions used for the lattice
Instead, a time dependence of the diffusion coefficient arisegjas simulations do not satisfy the local equilibrium condi-
that follows from both, the nonlinear density dependence ofions that are implicit in the reduced macroscopic equations.
the “diffusion coefficients,” and the particulas-like initial As mentioned if19], the initial condition for the reduced set
condition chosen for. At short times, however, even when of equations, at each point in space, is equal to the
the density ofA4 in the whole lattice might be comparable to asymptotic(equilibrium) solution that the actual initial con-
that of B, in the small region where thd particles are con- centrations would approach if the fast reaction were the only
centrated, a situation similar to the first case occurs. So, nprocess(and there was no spatial couplingsiven that the
major departures from the linear behavior are expettteel initial condition of the lattice gas, away from the small 3
initial slope is approximately 0.7). However, as time evolves,X 3 spot where all4 particles are located, corresponds to
the particles that penetrate inside the region where the demmniform initial concentrations given by A]y=0, [B]p

tively.
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200 T T T T 1 T T T T T LI T T

<100 - LAty
z 100 w O1F e 3
o T o b
C -
- : s ]
0 ol | B .
0 100 200 300 400 001 = 1 1 1 1 1 11 1 I 1 1 —
time (arb. units) 10 100
2
FIG. 4. Similar to Fig. 3, but for a lattice gas with a variable Np/L

number of diffusion to reaction time steps. The solid lines corre-

spond to one realization, while the dashed line is the average Ov%raltljle(s;.o%ta?ri?jtI%etr?;r(;irn?jltz:\tli?;z ?;;;Eglci?(?nn(;ftﬁ).ti?; ;huember
80 such realizations.

of A particles present in the lattice.

=Ng/L?, and[C]o=N¢/L?, then the initial condition of the

reduced set of equations away from the small spot is th&!ly approach similar values for both sets of simulations. We
spatially homogeneous equilibrium valaé (r,0) that satis- then conclude that the effective diffusion coefficients of the

fies kA*(r,0)B*(r,0)=k’C*(r,0) B* (r,0)+ C*(r,0) reduced set of equations provide an accurate estimate of how
=[B]o+[C]c; andA;(r 0)+ C* (,r 07):[C]o The value of the particles spread, given that the separation of time scales

A*(r,0) is not equal to zero for any of the simulations. Thus,'s S‘%ff'c'e““y large. . eq .

the calculation ofr2) obtained from the simulations of the _ F19ureé 3 shows the evolution &f, andN," as a function
reduced set of equations as defined before corresponds to 3htime, measured on the fast time scale, at a fitedlor-
average of the mean-square displacement over thopar- atory) pomtl Ioc_at.e.d ten Ia.tt.|ce points away from the center,
ticles that are injected in the small spot, not over.alpar-  Where ad-like initial condition was again set faN,. The
ticles, as it is the case for the lattice gas simulations. This 9ther species were randomly distributed. The plots corre-
the explanation of why the values of mean-square displacesPond to different values dt For largel [Fig. 3d), 1=3
ment obtained from the reduced set of equations are largef 10° and Fig. %c), |=5x10"], the reaction rapidly drives
than those obtained with the lattice gas. Namely, initially thefN€ System towards the equilibrium values, and thus, as ex-
injected A particles diffuse, on average, at their free diffu- Pected from Eq(13), diffusion essentially acts over the local
sion rate, while those that come from a chemical decay of th&quilibrium values determined by the relative abundance of

C particles[those that are included iA* (r,0)] diffuse at a

rescaled diffusion rate that is smaller. Thus, taking the aver- 500 — - ' ' -
age over all particles reduces the mean-square displacement B 1
when compared with the average over the injected particles. 400
In any case, we observe that the slope of the curves eventu-
=" 300
250 — T T T T T g
i ] < 200
200 - -
L I
- . 100
e O
A 150 — .. - .
= r . T
v 100} .. -
L . ® o 4 X (um)
<
50~ . : ° T FIG. 7. Turing pattern obtained from the modified version of the
i . L.l s <|> . | . 7 Schnackenberg model_{:\t long times, with a diffusion ratie4
00 100 200 300 200 below the standard critical value. Theaxis corresponds toy

=N, /\, averaged over 2:610° successive states of the lattice gas.
time (arb. unts) Solid circles(empty squarescorrespond teC (A) particles. The
_ solid line is the steady-state solution numerically found by integra-
FIG. 5. Evolution ofN,(x,t) averaged around the exploratory tion of the set of reaction difusion equations, for the concentration
point, x, as described in Fig. 3, after the chemical reaction takeof C molecules, while the dashed line stand for expected the con-
place forl =10 (filled circles andl=3x10° (empty diamonds centration ofA (see the text for more detajls
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from Eg. (6), and the actual value that follows from the
simulation, averaged over the whole lattice. In this case, the
particles were randomly distributed initially, apg was set
to zero. As expectetsee[32]) the error decays as the square
root of the number of particles.

We now discuss the results obtained for the case of six
chemical species reacting according to the sché3@g In
Fig. 7, we show the results of a simulation in one dimension.
Initially, all of the particles were randomly located at the
nodes of a lattice with periodic boundary conditigsanilar
results were obtained using zero flux boundary condijions
We divided the lattice of total length=10 wum into 350
cells, and the evolution took place with a time step of 2

400 =

0 frept Prgow b=y Py foy—] %10 ’s. The diffusion coefficients off and S, were D
0 2 4 6 8 10 =40 pum?/s and Ds,=160 um?/s. We initially set N,
X (m) =700, Ns =3100, Nx=780, Ny=630, Ng=12000, and

FIG. 8. Concentration profile of (solid line and difference  Nc=2000. The microscopic reaction probabilities per unit
between this concentration and the one obtained fror{Eymul-  time were P,_x=0.0002, Pyx_,=0.00002, Py_s,

tiplied by 16 (dashed lingat timest=0.03 s(a) andt=0.038 s —( 0002 Ps .A=0.00002,Pg ,.=0.02, andP. ,z=0.2
1 o — . ’ — . ’ — .

®). measured in s'. As mentioned before, if the fast reaction

with the buffer were not included, this system would not
the different species. It is in this circumstance that the consupport stable Turing patterns for any set of reaction r@tes
tinuum equationg6) and (7) hold. Whenl is decreased, the here, reaction probabilities because the diffusion ratio,
system is unable to reach the local equilibrium values. Thisl=Ds /Dx=4, is below the critical valued;~6 (seel[4)).

is shown in Fig. 3 where the divergence between the actuahowever, because of the interaction with ttiexmobile)
and the equilibrium paths is manife$tig. 3(b), I=10* and  puffer 5, a Turing pattern spontaneously emerges from the
Fig. 3(a), | =10%]. Because of the initial condition, the actual uniform initial condition, as we show in Fig. 7. This figure
number of particles that reach the exploratory point is abovgorresponds to a time average of the occupation numbers
the equilibrium values. Again, given that the system eventudivided by\) of A andC particles over a time interval of
ally approaches a homogeneous state, the departure of théhgth 0.05 s, taken after the first 0.5 s of the evolution
two curves is only transient. have elapsed. While the successive microscopic states

In Fig. 4 we plot the same evolution as that of Fig)3  change permanently, after a transient time, fluctuations on
but in this case, the ratio between the number of times thahe occupation number occur around a well-defined average
the diffusion and the reaction operators are applied is pickegs the one displayed in this figure. Given that the correlations
up randomly. This rule, which makes more sense physicallypetween successive states rapidly dissapear, the time average
yields the desired ratio between time scales only on averaggs equivalent to an ensemble average over many independent
The solid lines correspond to one realization, while thereglizations, and thus, the behavior observed in Fig. 7 is ex-
dashed line is the average over 80 independent realizationgected to be found at the macroscopic level. We indeed
As expected, the artificially rippled form of each individual checked this assertion by comparing the result of the lattice
realization gets smoother when the ensemble average ias with the numerical integration of the macroscopic laws
taken. In this way, the local approach to equilibrium, whichof motion, i.e., the set of four reaction diffusion equations
seems rather artificial in Fig. 3 or in the individual realization governing Eq(32) (similar results were obtained integrating
of Fig. 4, is somehow “hidden” in the averaged solution. It the system after the rescaling procedure was performed, as
is this averaged solution that has to be contrasted against thscribed ir[19]). The solid and dashed lines in Fig. 7 cor-
solution of the partial differential equation. respond to the time-independent concentration profiledof

In Fig. 5 we plot the value i, at the same exploratory andc species, respectively. It can be seen that there is a very
point, as a function of time, before the application of thegood agreement between the results of these two indepen-
diffusion operator fot = 10° andl =3x 10°. The initial con-  dent approaches.

dition is the same as before. As a result of the different Finally we check if the concentrations satisfy the local
effective diffusion coefficients, the times at which the front equilibrium condition[Eq. (19) with ky=k_,/k,] in this
passes through the point are shifted. At any given time, thease. As mentioned before, this is a consequence of the time-
amount of unbound4 particles is larger for lowet values.  scale separation and it is the main assumption underlying the
Thus, as we can see from the examples of Fig. 2, the effegast buffering approximation or the reduced description of
tive diffusivity is larger and the front arrives earlier for the [19]. Itis important to note that when the stationary state has
case depicted with filled circles € 107) than for the one heen reached the equilibrium condition must be satisfied.
with empty diamondslE3x 10°). However, local departures may occur during the evolution,
Figure 6 shows the relative error between the predicte@specially in those regions with large concentration gradi-
value for the occupation numbeN(r,t+7), that follows ents, where diffusion is not that slow compared to the fast
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reaction. We show in Fig. 8 the concentration profileCof €xistence of a symmetry breaking instability of Turing type,

(solid line) at long times {=0.03 s), when the concentra- those results were with unrealistic relations between the dif-
tion is close to the stationary pattern, and the difference befision coefficients of very similar chemical species. How-

tween this concentration and the one obtained from(Eg) ever, the analysis of the reduced set of reaction diffusion
at two different times. The dashed line corresponds to tim&duations shows that, without using a suitable tuned diffu-
t=0.03 s and the dotted line 1o=0.038 s. There we ob- Sion ratio, the pOSS|b|I|t_y of finding Turing structures in cells

serve that the fast buffering approximation is a reliable as—by the Selkov mechanism was, at least, overestimggsy

sumption in this case. We also observe that the error of thig\/Ith all this in mind, it is cI(_aar .that I becomes_necessary to
carefully assess the subtleties introduced by widespread used

approxmimon gets smaller for larger times and never Xexternal agents or by endogenous buffers in the dynamical
ceeds 10° scenario.

In general, the behavior of a set of reaction-diffusion
VI. CONCLUSIONS equations depends on the relative rates of diffusion and re-
.action. Quite often, we can think of a system as being in one

In most experimental situations, the behavior of a chemi- ft " tuati here th th tical VSIS |
cal or biochemical system can only be observed on tim! WO exreme situations where the mathematical analysis 1S
apable of being simplified. First, if diffusion is rapid com-

scales that are large compared with the times required fo?ared with the reaction, the concentrations are effectively

many of the reactions to reach equilibrium. The evolution isP if th hout th di d the behavior i
then governed by a reduced set of equations that describe gHgiorm throughout the medium, an € behavior 1S con-

collapsed spatiotemporal dynamics onto a Iower-dimensiona{rolI.ed 50'?'y by the reaction processes. This leads to a set of
manifold. Along with this spontaneous collapse, sometimeé)rdlnary d|fferent|a! equations, which can b.e further reduc.ed
exogenous chemicals that are added to the systems for difl number if reactions occur on several time scales using

ferent purposes, can further reduce the degrees of freedorﬁtandard center manifold techniques. At the other limit, dif-

The exogenous patrticles can alter dramatically the reactio sion 1S slow .compared with son(e)r_maype ?ﬂ Sl
kinetics and the rate of diffusion of the molecules involved.reacnons' In this case, however, the simplification cannot be

Perhaps the most striking evidence of this assertion is th erformed to such great extent as in the former situation, and

role played by starch molecules loaded in gels of continu? us it becomes important to fully understand the origin of

ously fed reactors in the CIMA reaction, where Turing struc-g;ehéﬂgglgat_rw: erglhz'ily tr(;;énn(:egnqneihgsne;a:arre:;:og
tures were first observdd0,11. Initially, starch was loaded : ysIS p : IS pap W

for visualization purposes, but the evidence suggests that t ow the reduced equations will reflect that the concentration

selective interactions of the iodide molecules with the starcl the different species reach local equilibrium values, and

provides the necessary difference between the diffusion Cc;*_low the effective rate of the reaction will be regulated by the

efficients of iodide and chlorite for Turing patterns to appea|r ate of supply of the reactants by the slow diffusive process.

[12,22. Another example refers to the existence of TuringIn this way we were able to understand the common chemi-

structures from biochemical mechanisms at work in cells. ItCal origin of both the rescaling of the self-diffusion terms,

is well known that the mechanism that controls the hair spac‘:de ttkilencr():s—dr;ﬁlﬁrl]vi([aigrrpns :hat ?ﬁpleirrm tTie r:nachro;coplc
ing in the whorl of the unicellular algAcetabulariacan be equations. AAS sho » More complex reaction schemes

modeled using the Schnackenberg reaction diffusion equ éhr?;e Y\r']'”:htge ﬁgﬁzggﬁg@eig} trhelz Fi%efetheaf_sre ty(?eth(g
tions, identifying the morphogens with calcium ions and S| P g u quations, s

cyclic-AMP [4,33]. While the experiments suggest that the present ana_lysis can also b‘? _extended to other cases, as the
u>sle of this gimpl]e model is wel?grounded, tﬁg relation be_results obtained on the modified Schnackenberg model sup-
tween the diffusivities needed for the emergence of a Turiné’ort'

instability does not hold in reality. Taking into account that

ca" is strongly bufferedn vivo, it is still possible that the ACKNOWLEDGMENTS
rescaling introduced by a fast reaction with a buffer allows This work was supported by the University of Buenos

for the appearance of patterns with a realistic ratio of diffu—Aires CONICET(Argenting and FOMEC. D.E.S. acknowl-
sivities. In this regard, the modified version of the Schnack—edge’S useful discussions with M. G. Zimmermann.
enberg reaction diffusion system analyzed in this paper,
shows the relevance of a selective interaction with buffers

for the appearance of such structures in celsother re- APPENDIX

lated example—not included in this paper—refers to the ex- | this appendix, we give a brief description of the dy-

istence of Turing structures in the Selkov model of glycolysisyamics of the reactive lattice gas automat®hGA), where

[36]. While previous workg37] numerically supported the \ye show why it is not necessary to keep track of the par-
ticles’ velocities if there is no exclusion principle. Consider a

e h Iso found Wiically th | d—Turi Fystem ofS chemical specieg’;, . . . X that diffuse in so-
€ have also found analytically the—en'arged—1uring Space oy ;inn ang that undergo a set of chemical reactions of the
the modified Schnackenberg reaction diffusion equations. If th

buffer concentration is large enough it is in principle possible to‘?ype
observe Turing structures with nearly equal diffusion coefficients. y ) y %)
See[35]. a X+ o Xe— BN+ BN, (AL)
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where the/th reaction ¢'=1, ... R) is characterized by the velocity can be set equal to the one that corresponds to
both, the set of stoichiometric indices!”?, BY) (s  the movement that the particle has performed. This can be
—1,... ) and the reaction rate constdot. The aim is to ~ Wtten as

construct an approximate dynamics for both the elastic and
reactive collision processes that occur in the real system. In ¢ (r y, t+7/2)= N(r—v;7,t— 1)
the RLGA model, the system evolves at discrete time steps

of size r on ad-dimensional regular lattice with lattice spac- i 0 - -

ing \, which for simplicity is taken to be a square lattice in xj:1 GUHWSr—vimt=7)—u),
two space dimension®r a cube in three dimension#\lso

for simplicity, we will only discuss the case of periodic (A2)

boundary conditions(in which case all lattice sites are - - - )
treated similarly, after an identification of the sites at theWhere Ns(r,t)==2ifs(r,v; ,t+/2) is the total number of

borders. In this Appendix we will take the particles’ veloci- Particles at point and timet, the £{")’s are random variables
ties into account, as it is done in RLGA that use the excluthat can be equal to 1, with probabilit;, and equal to O,
sion principle. We will then show why it is not necessary toWith probability 1—ps (with ps satisfying 1-£ps>0), and
keep track of these velocities, if there is no exclusion prin-* i the Heaviside function defined Biy(y) =1 if y=0, and
ciple, as in our case. We will assume that each particle cafit(y)=0 otherwise. Each random variabig” is the ith
have ¢+1 different velocities, wherg is the number of component of a (random (é+1)-uple in the set
nearest(different nodes that each lattice site hag=2 in  1(0,---.,0,(1,0,...,0,(0,1,...,0), ... (0,... 3} where
one dimension and=4 in two). During a time stepr, each  the probability of (Q. .. ,0) is 1~ &ps and the probability of

particle can move to any of its nearest lattice sites, dependin@y ©ther element in the set f&. At each diffusion time

on its velocity, or stay, if it has velocity zero. Thus, the St€P We associate, according to the probability distribution,

velocitiesv; with 1<i<¢ are vectors of siza/r that con- one elgme_n_t Qf th|§ setto every particle N the_ Iattu_:e m_ord_er
R _ ) ~ ] to decide if it is going to be moved and in which direction it

nect nelghporlng lattice S|tes,- anngO.ApartlcuIar state.of will be moved. We see from EqA2) thath(F,Ji t+712)

the RLGA is then characterized Wy sets of non-negative only depends on the total number of particlés at the pre-

integer variablesfS(F,Ji 1), s=1,... 5 0=i<¢, defined vious timet (and the set of random variableg)), but not on
at each lattice site and each timé. Eachfy(r,v;,t) repre-  the individual values of the distribution§,(r’,v;,t), at the
sents the number of particles of speciswith velocityv;,  neighboring sites’. From Eq.(A2) we also conclude that

at siter and timet. As mentioned before, the time step is the total number of particles at tinte+ 7/2, NS(F,H- 7/2),
divided in a diffusion(transpor} time step(that changes all  only depends on the total number of particles that reside at
the distributionsf s from t to t+ 7/2) and a reactive time step neighboring sites at the previous tirhe

(that changes the distributions fror 7/2 to t+ 7). There- The dynamics on the lattices that we associate to each
fore, the system evolves through the successive applicatiogpeciess is coupled by the chemical reaction. The reaction
of the transport and reaction operators. One may visualizeperation is local in space, i.e., it involves only one node on

the dynamics of the entire system as a stac® ittices(one  the stack ofS lattices. The reaction operat@® allows each

for each specigswith identical labeling of the nodes and of reactionr to occur with a certain probabilityassociated to
the particles’ velocities. The transport operator is designed t@,) which is independent of the particles velocities, and, for
model the elastic collisions of the particles with solvent mol-those that do occur, it subtracts or adds the appropriate num-
ecules. The way in which this process is modeled by RLGAver of particles as dictated by EGA1). Thus, the reaction
makes sense on a time scale of the order of the velocitgperator only affects the total number of particles at each
relaxation time, and on a length scale that is larger than th@ode in the following way:

mean free path of the particl®5]. Namely, it is assumed
that several collisions take place during a time step, so that
the final and initial velocities are not correlated. Thus, during
the (diffusion) time step, each particle of specig§ can
change its velocity to any velocity;, 1<i<¢ with prob-
ability ps and to velocityv,=0 with probability 1—¢p,. ~ Where 7y, is a random boolean variable. #, ,=1, then
Given that our lattice gas does not use the exclusion printhe /th reaction takes place at the lattice siteThe link
ciple, the velocity can be any, no matter what velocities thebetween the probability distribution of the random boolean
other particles at the node have. After that, the particle iyariable and the reaction rules that give the proper con-
moved to the corresponding neighboring site, depending otinuum limit, is achieved by choosing a function that de-
the velocity it has “picked.” This is equivalent to make each pends on the occupation numbésee[29] for a complete
particle perform a random walk, regardless of the last velocdiscussion on this topjc

ity it had. Namely, to choose its new locatigamong the From this discussion we immediately conclude that it is
current location and the nearest neighboring gnesgard-  sufficient to work with the total number of particle, at

less of the velocity it has. After the new location is chosen,each node and time, i.e., it is not necessary to keep track of

R
RNS<F,t):NS<F,t>+/Zl(ﬁé—aém,/, (A3)
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the particles’ velocities, as mentioned in Sec. lll. Some othewith a square lattice geometry. Second, we want to empha-
points are worth mentioning too. First, that lattice gases fosize that it was unnecessary to choose a particular reaction
reaction-diffusion systems do not suffer from the same sortule to derive the analytical results in Secs. Ill and IV. This is
of drawback that other kind of lattice gasém particular, so, because any particular choice of the reaction operator
those used to model the Navier-Stokes equatiton Namely,  should project, in a similar way, the mean concentration val-
for RLGA there are no spurious conservation laws associatedes onto the local equilibrium values of each species.
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